d2/d2layouts/d2cycle/layout.go

242 lines
7.1 KiB
Go
Raw Normal View History

2025-02-21 16:34:23 +00:00
package d2cycle
import (
"context"
"math"
"oss.terrastruct.com/d2/d2graph"
"oss.terrastruct.com/d2/lib/geo"
"oss.terrastruct.com/d2/lib/label"
"oss.terrastruct.com/util-go/go2"
)
const (
MIN_RADIUS = 200
PADDING = 20
MIN_SEGMENT_LEN = 10
ARC_STEPS = 30 // high resolution for smooth arcs
)
// Layout arranges nodes in a circle and routes edges with properly clipped arcs
func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
objects := g.Root.ChildrenArray
if len(objects) == 0 {
return nil
}
// Position labels and icons first
for _, obj := range g.Objects {
positionLabelsIcons(obj)
}
// Calculate layout parameters
nodeCircleRadius := calculateRadius(objects)
maxNodeSize := 0.0
for _, obj := range objects {
size := math.Max(obj.Width, obj.Height)
maxNodeSize = math.Max(maxNodeSize, size)
}
// Position nodes in circle
positionObjects(objects, nodeCircleRadius)
// Create properly clipped edge arcs
for _, edge := range g.Edges {
createCircularArc(edge, nodeCircleRadius, maxNodeSize)
}
return nil
}
func calculateRadius(objects []*d2graph.Object) float64 {
numObjects := float64(len(objects))
maxSize := 0.0
for _, obj := range objects {
size := math.Max(obj.Width, obj.Height)
maxSize = math.Max(maxSize, size)
}
minRadius := (maxSize/2 + PADDING) / math.Sin(math.Pi/numObjects)
return math.Max(minRadius, MIN_RADIUS)
}
func positionObjects(objects []*d2graph.Object, radius float64) {
numObjects := float64(len(objects))
angleOffset := -math.Pi / 2 // Start at top
for i, obj := range objects {
angle := angleOffset + (2*math.Pi*float64(i))/numObjects
x := radius * math.Cos(angle)
y := radius * math.Sin(angle)
// Center object at calculated position
obj.TopLeft = geo.NewPoint(
x-obj.Width/2,
y-obj.Height/2,
)
}
}
func createCircularArc(edge *d2graph.Edge, nodeCircleRadius, maxNodeSize float64) {
if edge.Src == nil || edge.Dst == nil {
return
}
srcCenter := edge.Src.Center()
dstCenter := edge.Dst.Center()
// Calculate arc radius outside node circle
arcRadius := nodeCircleRadius + maxNodeSize/2 + PADDING
// Calculate angles for arc endpoints
srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
if dstAngle < srcAngle {
dstAngle += 2 * math.Pi
}
// Generate arc path points
path := make([]*geo.Point, 0, ARC_STEPS+1)
for i := 0; i <= ARC_STEPS; i++ {
t := float64(i) / ARC_STEPS
angle := srcAngle + t*(dstAngle-srcAngle)
x := arcRadius * math.Cos(angle)
y := arcRadius * math.Sin(angle)
path = append(path, geo.NewPoint(x, y))
}
// Set exact endpoints (will be clipped later)
path[0] = srcCenter
path[len(path)-1] = dstCenter
// Clip path to node borders
edge.Route = path
startIndex, endIndex := edge.TraceToShape(edge.Route, 0, len(edge.Route)-1)
if startIndex < endIndex {
edge.Route = edge.Route[startIndex : endIndex+1]
}
edge.IsCurve = true
}
// clampPointOutsideBox walks forward from 'startIdx' until the path segment
// leaves the bounding box. Then it sets path[startIdx] to the intersection.
// If we never find it, we return (startIdx, path[startIdx]) meaning we can't clamp.
func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *geo.Point) {
if startIdx >= len(path)-1 {
return startIdx, path[startIdx]
}
// If path[startIdx] is outside, no clamp needed
if !boxContains(box, path[startIdx]) {
return startIdx, path[startIdx]
}
// Walk forward looking for outside
for i := startIdx + 1; i < len(path); i++ {
insideNext := boxContains(box, path[i])
if insideNext {
// still inside -> keep going
continue
}
// crossing from inside to outside between path[i-1], path[i]
seg := geo.NewSegment(path[i-1], path[i])
inters := boxIntersections(box, *seg)
if len(inters) > 0 {
// use first intersection
return i, inters[0]
}
// fallback => no intersection found
return i, path[i]
}
// entire remainder is inside, so we can't clamp
// Just return the end
last := len(path) - 1
return last, path[last]
}
// clampPointOutsideBoxReverse scans backward from endIdx while path[j] is in the box.
// Once we find crossing (outside→inside), we return (j, intersection).
func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (int, *geo.Point) {
if endIdx <= 0 {
return endIdx, path[endIdx]
}
if !boxContains(box, path[endIdx]) {
// already outside
return endIdx, path[endIdx]
}
for j := endIdx - 1; j >= 0; j-- {
if boxContains(box, path[j]) {
continue
}
// crossing from outside -> inside between path[j], path[j+1]
seg := geo.NewSegment(path[j], path[j+1])
inters := boxIntersections(box, *seg)
if len(inters) > 0 {
return j, inters[0]
}
return j, path[j]
}
// entire path inside
return 0, path[0]
}
// Helper if your geo.Box doesnt implement Contains()
func boxContains(b *geo.Box, p *geo.Point) bool {
// typical bounding-box check
return p.X >= b.TopLeft.X &&
p.X <= b.TopLeft.X+b.Width &&
p.Y >= b.TopLeft.Y &&
p.Y <= b.TopLeft.Y+b.Height
}
// Helper if your geo.Box doesnt implement Intersections(geo.Segment) yet
func boxIntersections(b *geo.Box, seg geo.Segment) []*geo.Point {
// We'll assume d2's standard geo.Box has a built-in Intersections(*Segment) method.
// If not, implement manually. For example, checking each of the 4 edges:
// left, right, top, bottom
// For simplicity, if you do have b.Intersections(...) you can just do:
// return b.Intersections(seg)
return b.Intersections(seg)
// If you don't have that, you'd code the line-rect intersection yourself.
}
// positionLabelsIcons is basically your logic that sets default label/icon positions if needed
func positionLabelsIcons(obj *d2graph.Object) {
// If there's an icon but no icon position, give it a default
if obj.Icon != nil && obj.IconPosition == nil {
if len(obj.ChildrenArray) > 0 {
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
if obj.LabelPosition == nil {
obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
return
}
} else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
} else {
obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
}
// If there's a label but no label position, give it a default
if obj.HasLabel() && obj.LabelPosition == nil {
if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else if obj.HasOutsideBottomLabel() {
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
} else if obj.Icon != nil {
obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
} else {
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
// If the label is bigger than the shape, fallback to outside positions
if float64(obj.LabelDimensions.Width) > obj.Width ||
float64(obj.LabelDimensions.Height) > obj.Height {
if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else {
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
}
}
}
}