iteration 5

This commit is contained in:
Mayank77maruti 2025-02-21 17:31:43 +00:00
parent 80848665db
commit 509a344277

View file

@ -14,27 +14,22 @@ const (
MIN_RADIUS = 200 MIN_RADIUS = 200
PADDING = 20 PADDING = 20
MIN_SEGMENT_LEN = 10 MIN_SEGMENT_LEN = 10
ARC_STEPS = 30 // high resolution for smooth arcs ARC_STEPS = 30
) )
// Layout arranges nodes in a circle, ensures label/icon positions are set,
// then routes edges with arcs that get clipped at node borders.
func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error { func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
objects := g.Root.ChildrenArray objects := g.Root.ChildrenArray
if len(objects) == 0 { if len(objects) == 0 {
return nil return nil
} }
// Ensure every object that has label/icon also has a default position
for _, obj := range g.Objects { for _, obj := range g.Objects {
positionLabelsIcons(obj) positionLabelsIcons(obj)
} }
// Arrange objects in a circle
radius := calculateRadius(objects) radius := calculateRadius(objects)
positionObjects(objects, radius) positionObjects(objects, radius)
// Create arcs for each edge
for _, edge := range g.Edges { for _, edge := range g.Edges {
createCircularArc(edge) createCircularArc(edge)
} }
@ -49,14 +44,12 @@ func calculateRadius(objects []*d2graph.Object) float64 {
size := math.Max(obj.Box.Width, obj.Box.Height) size := math.Max(obj.Box.Width, obj.Box.Height)
maxSize = math.Max(maxSize, size) maxSize = math.Max(maxSize, size)
} }
// Ensure enough radius to fit all objects
minRadius := (maxSize/2.0 + PADDING) / math.Sin(math.Pi/numObjects) minRadius := (maxSize/2.0 + PADDING) / math.Sin(math.Pi/numObjects)
return math.Max(minRadius, MIN_RADIUS) return math.Max(minRadius, MIN_RADIUS)
} }
func positionObjects(objects []*d2graph.Object, radius float64) { func positionObjects(objects []*d2graph.Object, radius float64) {
numObjects := float64(len(objects)) numObjects := float64(len(objects))
// Offset so i=0 is top-center
angleOffset := -math.Pi / 2 angleOffset := -math.Pi / 2
for i, obj := range objects { for i, obj := range objects {
@ -64,7 +57,6 @@ func positionObjects(objects []*d2graph.Object, radius float64) {
x := radius * math.Cos(angle) x := radius * math.Cos(angle)
y := radius * math.Sin(angle) y := radius * math.Sin(angle)
// Center the box at (x, y)
obj.TopLeft = geo.NewPoint( obj.TopLeft = geo.NewPoint(
x-obj.Box.Width/2, x-obj.Box.Width/2,
y-obj.Box.Height/2, y-obj.Box.Height/2,
@ -72,9 +64,6 @@ func positionObjects(objects []*d2graph.Object, radius float64) {
} }
} }
// createCircularArc samples a smooth arc from center to center,
// then forces the endpoints onto each shape's border by clamping them
// using the box intersection helpers.
func createCircularArc(edge *d2graph.Edge) { func createCircularArc(edge *d2graph.Edge) {
if edge.Src == nil || edge.Dst == nil { if edge.Src == nil || edge.Dst == nil {
return return
@ -83,7 +72,6 @@ func createCircularArc(edge *d2graph.Edge) {
srcCenter := edge.Src.Center() srcCenter := edge.Src.Center()
dstCenter := edge.Dst.Center() dstCenter := edge.Dst.Center()
// Compute angles from origin for both nodes
srcAngle := math.Atan2(srcCenter.Y, srcCenter.X) srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
dstAngle := math.Atan2(dstCenter.Y, dstCenter.X) dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
if dstAngle < srcAngle { if dstAngle < srcAngle {
@ -92,7 +80,6 @@ func createCircularArc(edge *d2graph.Edge) {
arcRadius := math.Hypot(srcCenter.X, srcCenter.Y) arcRadius := math.Hypot(srcCenter.X, srcCenter.Y)
// Sample points along the arc
path := make([]*geo.Point, 0, ARC_STEPS+1) path := make([]*geo.Point, 0, ARC_STEPS+1)
for i := 0; i <= ARC_STEPS; i++ { for i := 0; i <= ARC_STEPS; i++ {
t := float64(i) / float64(ARC_STEPS) t := float64(i) / float64(ARC_STEPS)
@ -101,57 +88,42 @@ func createCircularArc(edge *d2graph.Edge) {
y := arcRadius * math.Sin(angle) y := arcRadius * math.Sin(angle)
path = append(path, geo.NewPoint(x, y)) path = append(path, geo.NewPoint(x, y))
} }
// Ensure endpoints start at the centers
path[0] = srcCenter path[0] = srcCenter
path[len(path)-1] = dstCenter path[len(path)-1] = dstCenter
// Clamp the start point to the boundary of the source node
startIndex, newSrc := clampPointOutsideBox(edge.Src.Box, path, 0) startIndex, newSrc := clampPointOutsideBox(edge.Src.Box, path, 0)
// Clamp the end point to the boundary of the destination node
endIndex, newDst := clampPointOutsideBoxReverse(edge.Dst.Box, path, len(path)-1) endIndex, newDst := clampPointOutsideBoxReverse(edge.Dst.Box, path, len(path)-1)
// Update the endpoints with the clamped intersection points
path[0] = newSrc path[0] = newSrc
path[len(path)-1] = newDst path[len(path)-1] = newDst
// Update the route to only include the valid segment between the clamped indices
edge.Route = path[startIndex : endIndex+1] edge.Route = path[startIndex : endIndex+1]
edge.IsCurve = true edge.IsCurve = true
} }
// clampPointOutsideBox walks forward from 'startIdx' until the path segment
// leaves the bounding box. Then it sets path[startIdx] to the intersection.
// If no intersection is found, it returns the original point.
func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *geo.Point) { func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *geo.Point) {
if startIdx >= len(path)-1 { if startIdx >= len(path)-1 {
return startIdx, path[startIdx] return startIdx, path[startIdx]
} }
// If the current point is already outside, no clamping is needed.
if !boxContains(box, path[startIdx]) { if !boxContains(box, path[startIdx]) {
return startIdx, path[startIdx] return startIdx, path[startIdx]
} }
// Walk forward until we leave the box.
for i := startIdx + 1; i < len(path); i++ { for i := startIdx + 1; i < len(path); i++ {
if boxContains(box, path[i]) { if boxContains(box, path[i]) {
continue continue
} }
// Crossing from inside to outside between path[i-1] and path[i]
seg := geo.NewSegment(path[i-1], path[i]) seg := geo.NewSegment(path[i-1], path[i])
inters := boxIntersections(box, *seg) inters := boxIntersections(box, *seg)
if len(inters) > 0 { if len(inters) > 0 {
return i, inters[0] return i, inters[0]
} }
// Fallback if no intersection found
return i, path[i] return i, path[i]
} }
// If the entire remaining path is inside, return the last point.
last := len(path) - 1 last := len(path) - 1
return last, path[last] return last, path[last]
} }
// clampPointOutsideBoxReverse scans backward from endIdx while path[j] is in the box.
// When an outside-to-inside crossing is detected, it returns the intersection.
func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (int, *geo.Point) { func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (int, *geo.Point) {
if endIdx <= 0 { if endIdx <= 0 {
return endIdx, path[endIdx] return endIdx, path[endIdx]
@ -164,7 +136,6 @@ func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (i
if boxContains(box, path[j]) { if boxContains(box, path[j]) {
continue continue
} }
// Crossing from outside to inside between path[j] and path[j+1]
seg := geo.NewSegment(path[j], path[j+1]) seg := geo.NewSegment(path[j], path[j+1])
inters := boxIntersections(box, *seg) inters := boxIntersections(box, *seg)
if len(inters) > 0 { if len(inters) > 0 {
@ -172,11 +143,9 @@ func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (i
} }
return j, path[j] return j, path[j]
} }
// If the entire path is inside, return the first point.
return 0, path[0] return 0, path[0]
} }
// boxContains performs a typical bounding-box check.
func boxContains(b *geo.Box, p *geo.Point) bool { func boxContains(b *geo.Box, p *geo.Point) bool {
return p.X >= b.TopLeft.X && return p.X >= b.TopLeft.X &&
p.X <= b.TopLeft.X+b.Width && p.X <= b.TopLeft.X+b.Width &&
@ -184,15 +153,11 @@ func boxContains(b *geo.Box, p *geo.Point) bool {
p.Y <= b.TopLeft.Y+b.Height p.Y <= b.TopLeft.Y+b.Height
} }
// boxIntersections returns the intersection points between a box and a segment.
// This assumes that geo.Box implements an Intersections method.
func boxIntersections(b *geo.Box, seg geo.Segment) []*geo.Point { func boxIntersections(b *geo.Box, seg geo.Segment) []*geo.Point {
return b.Intersections(seg) return b.Intersections(seg)
} }
// positionLabelsIcons sets default positions for icons and labels if not already specified.
func positionLabelsIcons(obj *d2graph.Object) { func positionLabelsIcons(obj *d2graph.Object) {
// Set default icon position if an icon exists and none is specified.
if obj.Icon != nil && obj.IconPosition == nil { if obj.Icon != nil && obj.IconPosition == nil {
if len(obj.ChildrenArray) > 0 { if len(obj.ChildrenArray) > 0 {
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String()) obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
@ -207,7 +172,6 @@ func positionLabelsIcons(obj *d2graph.Object) {
} }
} }
// Set default label position if a label exists and none is specified.
if obj.HasLabel() && obj.LabelPosition == nil { if obj.HasLabel() && obj.LabelPosition == nil {
if len(obj.ChildrenArray) > 0 { if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String()) obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
@ -219,7 +183,6 @@ func positionLabelsIcons(obj *d2graph.Object) {
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String()) obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
} }
// If the label dimensions exceed the object's size, fallback to an outside position.
if float64(obj.LabelDimensions.Width) > obj.Width || if float64(obj.LabelDimensions.Width) > obj.Width ||
float64(obj.LabelDimensions.Height) > obj.Height { float64(obj.LabelDimensions.Height) > obj.Height {
if len(obj.ChildrenArray) > 0 { if len(obj.ChildrenArray) > 0 {