iteration 1

This commit is contained in:
Mayank77maruti 2025-02-21 17:05:31 +00:00
parent 8893981749
commit 527edda636
5 changed files with 2627 additions and 1024 deletions

View file

@ -1,3 +1,246 @@
// package d2cycle
// import (
// "context"
// "math"
// "oss.terrastruct.com/d2/d2graph"
// "oss.terrastruct.com/d2/lib/geo"
// "oss.terrastruct.com/d2/lib/label"
// "oss.terrastruct.com/util-go/go2"
// )
// const (
// MIN_RADIUS = 200
// PADDING = 20
// MIN_SEGMENT_LEN = 10
// ARC_STEPS = 30 // high resolution for smooth arcs
// )
// // Layout arranges nodes in a circle and routes edges with properly clipped arcs
// func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
// objects := g.Root.ChildrenArray
// if len(objects) == 0 {
// return nil
// }
// // Position labels and icons first
// for _, obj := range g.Objects {
// positionLabelsIcons(obj)
// }
// // Calculate layout parameters
// nodeCircleRadius := calculateRadius(objects)
// maxNodeSize := 0.0
// for _, obj := range objects {
// size := math.Max(obj.Width, obj.Height)
// maxNodeSize = math.Max(maxNodeSize, size)
// }
// // Position nodes in circle
// positionObjects(objects, nodeCircleRadius)
// // Create properly clipped edge arcs
// for _, edge := range g.Edges {
// createCircularArc(edge, nodeCircleRadius, maxNodeSize)
// }
// return nil
// }
// func calculateRadius(objects []*d2graph.Object) float64 {
// numObjects := float64(len(objects))
// maxSize := 0.0
// for _, obj := range objects {
// size := math.Max(obj.Width, obj.Height)
// maxSize = math.Max(maxSize, size)
// }
// minRadius := (maxSize/2 + PADDING) / math.Sin(math.Pi/numObjects)
// return math.Max(minRadius, MIN_RADIUS)
// }
// func positionObjects(objects []*d2graph.Object, radius float64) {
// numObjects := float64(len(objects))
// angleOffset := -math.Pi / 2 // Start at top
// for i, obj := range objects {
// angle := angleOffset + (2*math.Pi*float64(i))/numObjects
// x := radius * math.Cos(angle)
// y := radius * math.Sin(angle)
// // Center object at calculated position
// obj.TopLeft = geo.NewPoint(
// x-obj.Width/2,
// y-obj.Height/2,
// )
// }
// }
// func createCircularArc(edge *d2graph.Edge, nodeCircleRadius, maxNodeSize float64) {
// if edge.Src == nil || edge.Dst == nil {
// return
// }
// srcCenter := edge.Src.Center()
// dstCenter := edge.Dst.Center()
// // Calculate arc radius outside node circle
// arcRadius := nodeCircleRadius + maxNodeSize/2 + PADDING
// // Calculate angles for arc endpoints
// srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
// dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
// if dstAngle < srcAngle {
// dstAngle += 2 * math.Pi
// }
// // Generate arc path points
// path := make([]*geo.Point, 0, ARC_STEPS+1)
// for i := 0; i <= ARC_STEPS; i++ {
// t := float64(i) / ARC_STEPS
// angle := srcAngle + t*(dstAngle-srcAngle)
// x := arcRadius * math.Cos(angle)
// y := arcRadius * math.Sin(angle)
// path = append(path, geo.NewPoint(x, y))
// }
// // Set exact endpoints (will be clipped later)
// path[0] = srcCenter
// path[len(path)-1] = dstCenter
// // Clip path to node borders
// edge.Route = path
// startIndex, endIndex := edge.TraceToShape(edge.Route, 0, len(edge.Route)-1)
// if startIndex < endIndex {
// edge.Route = edge.Route[startIndex : endIndex+1]
// }
// edge.IsCurve = true
// }
// // clampPointOutsideBox walks forward from 'startIdx' until the path segment
// // leaves the bounding box. Then it sets path[startIdx] to the intersection.
// // If we never find it, we return (startIdx, path[startIdx]) meaning we can't clamp.
// func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *geo.Point) {
// if startIdx >= len(path)-1 {
// return startIdx, path[startIdx]
// }
// // If path[startIdx] is outside, no clamp needed
// if !boxContains(box, path[startIdx]) {
// return startIdx, path[startIdx]
// }
// // Walk forward looking for outside
// for i := startIdx + 1; i < len(path); i++ {
// insideNext := boxContains(box, path[i])
// if insideNext {
// // still inside -> keep going
// continue
// }
// // crossing from inside to outside between path[i-1], path[i]
// seg := geo.NewSegment(path[i-1], path[i])
// inters := boxIntersections(box, *seg)
// if len(inters) > 0 {
// // use first intersection
// return i, inters[0]
// }
// // fallback => no intersection found
// return i, path[i]
// }
// // entire remainder is inside, so we can't clamp
// // Just return the end
// last := len(path) - 1
// return last, path[last]
// }
// // clampPointOutsideBoxReverse scans backward from endIdx while path[j] is in the box.
// // Once we find crossing (outside→inside), we return (j, intersection).
// func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (int, *geo.Point) {
// if endIdx <= 0 {
// return endIdx, path[endIdx]
// }
// if !boxContains(box, path[endIdx]) {
// // already outside
// return endIdx, path[endIdx]
// }
// for j := endIdx - 1; j >= 0; j-- {
// if boxContains(box, path[j]) {
// continue
// }
// // crossing from outside -> inside between path[j], path[j+1]
// seg := geo.NewSegment(path[j], path[j+1])
// inters := boxIntersections(box, *seg)
// if len(inters) > 0 {
// return j, inters[0]
// }
// return j, path[j]
// }
// // entire path inside
// return 0, path[0]
// }
// // Helper if your geo.Box doesnt implement Contains()
// func boxContains(b *geo.Box, p *geo.Point) bool {
// // typical bounding-box check
// return p.X >= b.TopLeft.X &&
// p.X <= b.TopLeft.X+b.Width &&
// p.Y >= b.TopLeft.Y &&
// p.Y <= b.TopLeft.Y+b.Height
// }
// // Helper if your geo.Box doesnt implement Intersections(geo.Segment) yet
// func boxIntersections(b *geo.Box, seg geo.Segment) []*geo.Point {
// // We'll assume d2's standard geo.Box has a built-in Intersections(*Segment) method.
// // If not, implement manually. For example, checking each of the 4 edges:
// // left, right, top, bottom
// // For simplicity, if you do have b.Intersections(...) you can just do:
// // return b.Intersections(seg)
// return b.Intersections(seg)
// // If you don't have that, you'd code the line-rect intersection yourself.
// }
// // positionLabelsIcons is basically your logic that sets default label/icon positions if needed
// func positionLabelsIcons(obj *d2graph.Object) {
// // If there's an icon but no icon position, give it a default
// if obj.Icon != nil && obj.IconPosition == nil {
// if len(obj.ChildrenArray) > 0 {
// obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
// if obj.LabelPosition == nil {
// obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
// return
// }
// } else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
// obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
// } else {
// obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
// }
// }
// // If there's a label but no label position, give it a default
// if obj.HasLabel() && obj.LabelPosition == nil {
// if len(obj.ChildrenArray) > 0 {
// obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
// } else if obj.HasOutsideBottomLabel() {
// obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
// } else if obj.Icon != nil {
// obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
// } else {
// obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
// }
// // If the label is bigger than the shape, fallback to outside positions
// if float64(obj.LabelDimensions.Width) > obj.Width ||
// float64(obj.LabelDimensions.Height) > obj.Height {
// if len(obj.ChildrenArray) > 0 {
// obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
// } else {
// obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
// }
// }
// }
// }
package d2cycle package d2cycle
import ( import (
@ -13,62 +256,49 @@ import (
const ( const (
MIN_RADIUS = 200 MIN_RADIUS = 200
PADDING = 20 PADDING = 20
MIN_SEGMENT_LEN = 10 ARC_STEPS = 60 // High resolution for perfect circles
ARC_STEPS = 30 // high resolution for smooth arcs
) )
// Layout arranges nodes in a circle and routes edges with properly clipped arcs
func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error { func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
objects := g.Root.ChildrenArray objects := g.Root.ChildrenArray
if len(objects) == 0 { if len(objects) == 0 {
return nil return nil
} }
// Position labels and icons first
for _, obj := range g.Objects { for _, obj := range g.Objects {
positionLabelsIcons(obj) positionLabelsIcons(obj)
} }
// Calculate layout parameters baseRadius := calculateBaseRadius(objects)
nodeCircleRadius := calculateRadius(objects) positionObjects(objects, baseRadius)
maxNodeSize := 0.0
for _, obj := range objects {
size := math.Max(obj.Width, obj.Height)
maxNodeSize = math.Max(maxNodeSize, size)
}
// Position nodes in circle
positionObjects(objects, nodeCircleRadius)
// Create properly clipped edge arcs
for _, edge := range g.Edges { for _, edge := range g.Edges {
createCircularArc(edge, nodeCircleRadius, maxNodeSize) createPerfectArc(edge, baseRadius)
} }
return nil return nil
} }
func calculateRadius(objects []*d2graph.Object) float64 { func calculateBaseRadius(objects []*d2graph.Object) float64 {
numObjects := float64(len(objects)) numNodes := float64(len(objects))
maxSize := 0.0 maxSize := 0.0
for _, obj := range objects { for _, obj := range objects {
size := math.Max(obj.Width, obj.Height) size := math.Max(obj.Width, obj.Height)
maxSize = math.Max(maxSize, size) maxSize = math.Max(maxSize, size)
} }
minRadius := (maxSize/2 + PADDING) / math.Sin(math.Pi/numObjects) radius := (maxSize + 2*PADDING) / (2 * math.Sin(math.Pi/numNodes))
return math.Max(minRadius, MIN_RADIUS) return math.Max(radius, MIN_RADIUS)
} }
func positionObjects(objects []*d2graph.Object, radius float64) { func positionObjects(objects []*d2graph.Object, radius float64) {
numObjects := float64(len(objects)) numObjects := float64(len(objects))
angleOffset := -math.Pi / 2 // Start at top angleOffset := -math.Pi / 2
for i, obj := range objects { for i, obj := range objects {
angle := angleOffset + (2*math.Pi*float64(i))/numObjects angle := angleOffset + (2*math.Pi*float64(i))/numObjects
x := radius * math.Cos(angle) x := radius * math.Cos(angle)
y := radius * math.Sin(angle) y := radius * math.Sin(angle)
// Center object at calculated position
obj.TopLeft = geo.NewPoint( obj.TopLeft = geo.NewPoint(
x-obj.Width/2, x-obj.Width/2,
y-obj.Height/2, y-obj.Height/2,
@ -76,131 +306,55 @@ func positionObjects(objects []*d2graph.Object, radius float64) {
} }
} }
func createCircularArc(edge *d2graph.Edge, nodeCircleRadius, maxNodeSize float64) { func createPerfectArc(edge *d2graph.Edge, baseRadius float64) {
if edge.Src == nil || edge.Dst == nil { if edge.Src == nil || edge.Dst == nil || edge.Src == edge.Dst {
return return
} }
srcCenter := edge.Src.Center() srcCenter := edge.Src.Center()
dstCenter := edge.Dst.Center() dstCenter := edge.Dst.Center()
center := geo.NewPoint(0, 0) // Layout center
// Calculate arc radius outside node circle // Calculate angles with proper wrapping
arcRadius := nodeCircleRadius + maxNodeSize/2 + PADDING startAngle := math.Atan2(srcCenter.Y-center.Y, srcCenter.X-center.X)
endAngle := math.Atan2(dstCenter.Y-center.Y, dstCenter.X-center.X)
// Calculate angles for arc endpoints
srcAngle := math.Atan2(srcCenter.Y, srcCenter.X) // Handle angle wrapping for shortest path
dstAngle := math.Atan2(dstCenter.Y, dstCenter.X) angleDiff := endAngle - startAngle
if dstAngle < srcAngle { if angleDiff < 0 {
dstAngle += 2 * math.Pi angleDiff += 2 * math.Pi
}
if angleDiff > math.Pi {
angleDiff -= 2 * math.Pi
} }
// Generate arc path points // Generate perfect circular arc
path := make([]*geo.Point, 0, ARC_STEPS+1) path := make([]*geo.Point, 0, ARC_STEPS+1)
for i := 0; i <= ARC_STEPS; i++ { for i := 0; i <= ARC_STEPS; i++ {
t := float64(i) / ARC_STEPS t := float64(i) / ARC_STEPS
angle := srcAngle + t*(dstAngle-srcAngle) currentAngle := startAngle + t*angleDiff
x := arcRadius * math.Cos(angle) x := center.X + baseRadius*math.Cos(currentAngle)
y := arcRadius * math.Sin(angle) y := center.Y + baseRadius*math.Sin(currentAngle)
path = append(path, geo.NewPoint(x, y)) path = append(path, geo.NewPoint(x, y))
} }
// Set exact endpoints (will be clipped later) // Clip to shape boundaries while preserving arc
path[0] = srcCenter
path[len(path)-1] = dstCenter
// Clip path to node borders
edge.Route = path edge.Route = path
startIndex, endIndex := edge.TraceToShape(edge.Route, 0, len(edge.Route)-1) startIdx, endIdx := edge.TraceToShape(edge.Route, 0, len(edge.Route)-1)
if startIndex < endIndex {
edge.Route = edge.Route[startIndex : endIndex+1] // Maintain smooth arc after clipping
if startIdx < endIdx {
edge.Route = edge.Route[startIdx : endIdx+1]
// Ensure minimum points for smooth rendering
if len(edge.Route) < 3 {
edge.Route = []*geo.Point{path[0], path[len(path)-1]}
}
} }
edge.IsCurve = true edge.IsCurve = true
} }
// clampPointOutsideBox walks forward from 'startIdx' until the path segment
// leaves the bounding box. Then it sets path[startIdx] to the intersection.
// If we never find it, we return (startIdx, path[startIdx]) meaning we can't clamp.
func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *geo.Point) {
if startIdx >= len(path)-1 {
return startIdx, path[startIdx]
}
// If path[startIdx] is outside, no clamp needed
if !boxContains(box, path[startIdx]) {
return startIdx, path[startIdx]
}
// Walk forward looking for outside
for i := startIdx + 1; i < len(path); i++ {
insideNext := boxContains(box, path[i])
if insideNext {
// still inside -> keep going
continue
}
// crossing from inside to outside between path[i-1], path[i]
seg := geo.NewSegment(path[i-1], path[i])
inters := boxIntersections(box, *seg)
if len(inters) > 0 {
// use first intersection
return i, inters[0]
}
// fallback => no intersection found
return i, path[i]
}
// entire remainder is inside, so we can't clamp
// Just return the end
last := len(path) - 1
return last, path[last]
}
// clampPointOutsideBoxReverse scans backward from endIdx while path[j] is in the box.
// Once we find crossing (outside→inside), we return (j, intersection).
func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (int, *geo.Point) {
if endIdx <= 0 {
return endIdx, path[endIdx]
}
if !boxContains(box, path[endIdx]) {
// already outside
return endIdx, path[endIdx]
}
for j := endIdx - 1; j >= 0; j-- {
if boxContains(box, path[j]) {
continue
}
// crossing from outside -> inside between path[j], path[j+1]
seg := geo.NewSegment(path[j], path[j+1])
inters := boxIntersections(box, *seg)
if len(inters) > 0 {
return j, inters[0]
}
return j, path[j]
}
// entire path inside
return 0, path[0]
}
// Helper if your geo.Box doesnt implement Contains()
func boxContains(b *geo.Box, p *geo.Point) bool {
// typical bounding-box check
return p.X >= b.TopLeft.X &&
p.X <= b.TopLeft.X+b.Width &&
p.Y >= b.TopLeft.Y &&
p.Y <= b.TopLeft.Y+b.Height
}
// Helper if your geo.Box doesnt implement Intersections(geo.Segment) yet
func boxIntersections(b *geo.Box, seg geo.Segment) []*geo.Point {
// We'll assume d2's standard geo.Box has a built-in Intersections(*Segment) method.
// If not, implement manually. For example, checking each of the 4 edges:
// left, right, top, bottom
// For simplicity, if you do have b.Intersections(...) you can just do:
// return b.Intersections(seg)
return b.Intersections(seg)
// If you don't have that, you'd code the line-rect intersection yourself.
}
// positionLabelsIcons is basically your logic that sets default label/icon positions if needed
func positionLabelsIcons(obj *d2graph.Object) { func positionLabelsIcons(obj *d2graph.Object) {
// If there's an icon but no icon position, give it a default // If there's an icon but no icon position, give it a default
if obj.Icon != nil && obj.IconPosition == nil { if obj.Icon != nil && obj.IconPosition == nil {
@ -217,7 +371,6 @@ func positionLabelsIcons(obj *d2graph.Object) {
} }
} }
// If there's a label but no label position, give it a default
if obj.HasLabel() && obj.LabelPosition == nil { if obj.HasLabel() && obj.LabelPosition == nil {
if len(obj.ChildrenArray) > 0 { if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String()) obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
@ -229,7 +382,6 @@ func positionLabelsIcons(obj *d2graph.Object) {
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String()) obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
} }
// If the label is bigger than the shape, fallback to outside positions
if float64(obj.LabelDimensions.Width) > obj.Width || if float64(obj.LabelDimensions.Width) > obj.Width ||
float64(obj.LabelDimensions.Height) > obj.Height { float64(obj.LabelDimensions.Height) > obj.Height {
if len(obj.ChildrenArray) > 0 { if len(obj.ChildrenArray) > 0 {
@ -239,4 +391,15 @@ func positionLabelsIcons(obj *d2graph.Object) {
} }
} }
} }
}
func boxContains(b *geo.Box, p *geo.Point) bool {
return p.X >= b.TopLeft.X &&
p.X <= b.TopLeft.X+b.Width &&
p.Y >= b.TopLeft.Y &&
p.Y <= b.TopLeft.Y+b.Height
}
func boxIntersections(b *geo.Box, seg geo.Segment) []*geo.Point {
return b.Intersections(seg)
} }

File diff suppressed because it is too large Load diff

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 18 KiB

After

Width:  |  Height:  |  Size: 22 KiB

File diff suppressed because it is too large Load diff

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 18 KiB

After

Width:  |  Height:  |  Size: 22 KiB