iteration 1
This commit is contained in:
parent
8893981749
commit
527edda636
5 changed files with 2627 additions and 1024 deletions
|
|
@ -1,3 +1,246 @@
|
|||
// package d2cycle
|
||||
|
||||
// import (
|
||||
// "context"
|
||||
// "math"
|
||||
|
||||
// "oss.terrastruct.com/d2/d2graph"
|
||||
// "oss.terrastruct.com/d2/lib/geo"
|
||||
// "oss.terrastruct.com/d2/lib/label"
|
||||
// "oss.terrastruct.com/util-go/go2"
|
||||
// )
|
||||
|
||||
// const (
|
||||
// MIN_RADIUS = 200
|
||||
// PADDING = 20
|
||||
// MIN_SEGMENT_LEN = 10
|
||||
// ARC_STEPS = 30 // high resolution for smooth arcs
|
||||
// )
|
||||
|
||||
// // Layout arranges nodes in a circle and routes edges with properly clipped arcs
|
||||
// func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
|
||||
// objects := g.Root.ChildrenArray
|
||||
// if len(objects) == 0 {
|
||||
// return nil
|
||||
// }
|
||||
|
||||
// // Position labels and icons first
|
||||
// for _, obj := range g.Objects {
|
||||
// positionLabelsIcons(obj)
|
||||
// }
|
||||
|
||||
// // Calculate layout parameters
|
||||
// nodeCircleRadius := calculateRadius(objects)
|
||||
// maxNodeSize := 0.0
|
||||
// for _, obj := range objects {
|
||||
// size := math.Max(obj.Width, obj.Height)
|
||||
// maxNodeSize = math.Max(maxNodeSize, size)
|
||||
// }
|
||||
|
||||
// // Position nodes in circle
|
||||
// positionObjects(objects, nodeCircleRadius)
|
||||
|
||||
// // Create properly clipped edge arcs
|
||||
// for _, edge := range g.Edges {
|
||||
// createCircularArc(edge, nodeCircleRadius, maxNodeSize)
|
||||
// }
|
||||
|
||||
// return nil
|
||||
// }
|
||||
|
||||
// func calculateRadius(objects []*d2graph.Object) float64 {
|
||||
// numObjects := float64(len(objects))
|
||||
// maxSize := 0.0
|
||||
// for _, obj := range objects {
|
||||
// size := math.Max(obj.Width, obj.Height)
|
||||
// maxSize = math.Max(maxSize, size)
|
||||
// }
|
||||
// minRadius := (maxSize/2 + PADDING) / math.Sin(math.Pi/numObjects)
|
||||
// return math.Max(minRadius, MIN_RADIUS)
|
||||
// }
|
||||
|
||||
// func positionObjects(objects []*d2graph.Object, radius float64) {
|
||||
// numObjects := float64(len(objects))
|
||||
// angleOffset := -math.Pi / 2 // Start at top
|
||||
|
||||
// for i, obj := range objects {
|
||||
// angle := angleOffset + (2*math.Pi*float64(i))/numObjects
|
||||
// x := radius * math.Cos(angle)
|
||||
// y := radius * math.Sin(angle)
|
||||
|
||||
// // Center object at calculated position
|
||||
// obj.TopLeft = geo.NewPoint(
|
||||
// x-obj.Width/2,
|
||||
// y-obj.Height/2,
|
||||
// )
|
||||
// }
|
||||
// }
|
||||
|
||||
// func createCircularArc(edge *d2graph.Edge, nodeCircleRadius, maxNodeSize float64) {
|
||||
// if edge.Src == nil || edge.Dst == nil {
|
||||
// return
|
||||
// }
|
||||
|
||||
// srcCenter := edge.Src.Center()
|
||||
// dstCenter := edge.Dst.Center()
|
||||
|
||||
// // Calculate arc radius outside node circle
|
||||
// arcRadius := nodeCircleRadius + maxNodeSize/2 + PADDING
|
||||
|
||||
// // Calculate angles for arc endpoints
|
||||
// srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
|
||||
// dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
|
||||
// if dstAngle < srcAngle {
|
||||
// dstAngle += 2 * math.Pi
|
||||
// }
|
||||
|
||||
// // Generate arc path points
|
||||
// path := make([]*geo.Point, 0, ARC_STEPS+1)
|
||||
// for i := 0; i <= ARC_STEPS; i++ {
|
||||
// t := float64(i) / ARC_STEPS
|
||||
// angle := srcAngle + t*(dstAngle-srcAngle)
|
||||
// x := arcRadius * math.Cos(angle)
|
||||
// y := arcRadius * math.Sin(angle)
|
||||
// path = append(path, geo.NewPoint(x, y))
|
||||
// }
|
||||
|
||||
// // Set exact endpoints (will be clipped later)
|
||||
// path[0] = srcCenter
|
||||
// path[len(path)-1] = dstCenter
|
||||
|
||||
// // Clip path to node borders
|
||||
// edge.Route = path
|
||||
// startIndex, endIndex := edge.TraceToShape(edge.Route, 0, len(edge.Route)-1)
|
||||
// if startIndex < endIndex {
|
||||
// edge.Route = edge.Route[startIndex : endIndex+1]
|
||||
// }
|
||||
// edge.IsCurve = true
|
||||
// }
|
||||
|
||||
// // clampPointOutsideBox walks forward from 'startIdx' until the path segment
|
||||
// // leaves the bounding box. Then it sets path[startIdx] to the intersection.
|
||||
// // If we never find it, we return (startIdx, path[startIdx]) meaning we can't clamp.
|
||||
// func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *geo.Point) {
|
||||
// if startIdx >= len(path)-1 {
|
||||
// return startIdx, path[startIdx]
|
||||
// }
|
||||
// // If path[startIdx] is outside, no clamp needed
|
||||
// if !boxContains(box, path[startIdx]) {
|
||||
// return startIdx, path[startIdx]
|
||||
// }
|
||||
|
||||
// // Walk forward looking for outside
|
||||
// for i := startIdx + 1; i < len(path); i++ {
|
||||
// insideNext := boxContains(box, path[i])
|
||||
// if insideNext {
|
||||
// // still inside -> keep going
|
||||
// continue
|
||||
// }
|
||||
// // crossing from inside to outside between path[i-1], path[i]
|
||||
// seg := geo.NewSegment(path[i-1], path[i])
|
||||
// inters := boxIntersections(box, *seg)
|
||||
// if len(inters) > 0 {
|
||||
// // use first intersection
|
||||
// return i, inters[0]
|
||||
// }
|
||||
// // fallback => no intersection found
|
||||
// return i, path[i]
|
||||
// }
|
||||
// // entire remainder is inside, so we can't clamp
|
||||
// // Just return the end
|
||||
// last := len(path) - 1
|
||||
// return last, path[last]
|
||||
// }
|
||||
|
||||
// // clampPointOutsideBoxReverse scans backward from endIdx while path[j] is in the box.
|
||||
// // Once we find crossing (outside→inside), we return (j, intersection).
|
||||
// func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (int, *geo.Point) {
|
||||
// if endIdx <= 0 {
|
||||
// return endIdx, path[endIdx]
|
||||
// }
|
||||
// if !boxContains(box, path[endIdx]) {
|
||||
// // already outside
|
||||
// return endIdx, path[endIdx]
|
||||
// }
|
||||
|
||||
// for j := endIdx - 1; j >= 0; j-- {
|
||||
// if boxContains(box, path[j]) {
|
||||
// continue
|
||||
// }
|
||||
// // crossing from outside -> inside between path[j], path[j+1]
|
||||
// seg := geo.NewSegment(path[j], path[j+1])
|
||||
// inters := boxIntersections(box, *seg)
|
||||
// if len(inters) > 0 {
|
||||
// return j, inters[0]
|
||||
// }
|
||||
// return j, path[j]
|
||||
// }
|
||||
|
||||
// // entire path inside
|
||||
// return 0, path[0]
|
||||
// }
|
||||
|
||||
// // Helper if your geo.Box doesn’t implement Contains()
|
||||
// func boxContains(b *geo.Box, p *geo.Point) bool {
|
||||
// // typical bounding-box check
|
||||
// return p.X >= b.TopLeft.X &&
|
||||
// p.X <= b.TopLeft.X+b.Width &&
|
||||
// p.Y >= b.TopLeft.Y &&
|
||||
// p.Y <= b.TopLeft.Y+b.Height
|
||||
// }
|
||||
|
||||
// // Helper if your geo.Box doesn’t implement Intersections(geo.Segment) yet
|
||||
// func boxIntersections(b *geo.Box, seg geo.Segment) []*geo.Point {
|
||||
// // We'll assume d2's standard geo.Box has a built-in Intersections(*Segment) method.
|
||||
// // If not, implement manually. For example, checking each of the 4 edges:
|
||||
// // left, right, top, bottom
|
||||
// // For simplicity, if you do have b.Intersections(...) you can just do:
|
||||
// // return b.Intersections(seg)
|
||||
// return b.Intersections(seg)
|
||||
// // If you don't have that, you'd code the line-rect intersection yourself.
|
||||
// }
|
||||
|
||||
// // positionLabelsIcons is basically your logic that sets default label/icon positions if needed
|
||||
// func positionLabelsIcons(obj *d2graph.Object) {
|
||||
// // If there's an icon but no icon position, give it a default
|
||||
// if obj.Icon != nil && obj.IconPosition == nil {
|
||||
// if len(obj.ChildrenArray) > 0 {
|
||||
// obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
|
||||
// if obj.LabelPosition == nil {
|
||||
// obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
|
||||
// return
|
||||
// }
|
||||
// } else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
|
||||
// obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
|
||||
// } else {
|
||||
// obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
|
||||
// }
|
||||
// }
|
||||
|
||||
// // If there's a label but no label position, give it a default
|
||||
// if obj.HasLabel() && obj.LabelPosition == nil {
|
||||
// if len(obj.ChildrenArray) > 0 {
|
||||
// obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
|
||||
// } else if obj.HasOutsideBottomLabel() {
|
||||
// obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
|
||||
// } else if obj.Icon != nil {
|
||||
// obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
|
||||
// } else {
|
||||
// obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
|
||||
// }
|
||||
|
||||
// // If the label is bigger than the shape, fallback to outside positions
|
||||
// if float64(obj.LabelDimensions.Width) > obj.Width ||
|
||||
// float64(obj.LabelDimensions.Height) > obj.Height {
|
||||
// if len(obj.ChildrenArray) > 0 {
|
||||
// obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
|
||||
// } else {
|
||||
// obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
package d2cycle
|
||||
|
||||
import (
|
||||
|
|
@ -13,62 +256,49 @@ import (
|
|||
const (
|
||||
MIN_RADIUS = 200
|
||||
PADDING = 20
|
||||
MIN_SEGMENT_LEN = 10
|
||||
ARC_STEPS = 30 // high resolution for smooth arcs
|
||||
ARC_STEPS = 60 // High resolution for perfect circles
|
||||
)
|
||||
|
||||
// Layout arranges nodes in a circle and routes edges with properly clipped arcs
|
||||
func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
|
||||
objects := g.Root.ChildrenArray
|
||||
if len(objects) == 0 {
|
||||
return nil
|
||||
}
|
||||
|
||||
// Position labels and icons first
|
||||
for _, obj := range g.Objects {
|
||||
positionLabelsIcons(obj)
|
||||
}
|
||||
|
||||
// Calculate layout parameters
|
||||
nodeCircleRadius := calculateRadius(objects)
|
||||
maxNodeSize := 0.0
|
||||
for _, obj := range objects {
|
||||
size := math.Max(obj.Width, obj.Height)
|
||||
maxNodeSize = math.Max(maxNodeSize, size)
|
||||
}
|
||||
baseRadius := calculateBaseRadius(objects)
|
||||
positionObjects(objects, baseRadius)
|
||||
|
||||
// Position nodes in circle
|
||||
positionObjects(objects, nodeCircleRadius)
|
||||
|
||||
// Create properly clipped edge arcs
|
||||
for _, edge := range g.Edges {
|
||||
createCircularArc(edge, nodeCircleRadius, maxNodeSize)
|
||||
createPerfectArc(edge, baseRadius)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func calculateRadius(objects []*d2graph.Object) float64 {
|
||||
numObjects := float64(len(objects))
|
||||
func calculateBaseRadius(objects []*d2graph.Object) float64 {
|
||||
numNodes := float64(len(objects))
|
||||
maxSize := 0.0
|
||||
for _, obj := range objects {
|
||||
size := math.Max(obj.Width, obj.Height)
|
||||
maxSize = math.Max(maxSize, size)
|
||||
}
|
||||
minRadius := (maxSize/2 + PADDING) / math.Sin(math.Pi/numObjects)
|
||||
return math.Max(minRadius, MIN_RADIUS)
|
||||
radius := (maxSize + 2*PADDING) / (2 * math.Sin(math.Pi/numNodes))
|
||||
return math.Max(radius, MIN_RADIUS)
|
||||
}
|
||||
|
||||
func positionObjects(objects []*d2graph.Object, radius float64) {
|
||||
numObjects := float64(len(objects))
|
||||
angleOffset := -math.Pi / 2 // Start at top
|
||||
angleOffset := -math.Pi / 2
|
||||
|
||||
for i, obj := range objects {
|
||||
angle := angleOffset + (2*math.Pi*float64(i))/numObjects
|
||||
x := radius * math.Cos(angle)
|
||||
y := radius * math.Sin(angle)
|
||||
|
||||
// Center object at calculated position
|
||||
obj.TopLeft = geo.NewPoint(
|
||||
x-obj.Width/2,
|
||||
y-obj.Height/2,
|
||||
|
|
@ -76,131 +306,55 @@ func positionObjects(objects []*d2graph.Object, radius float64) {
|
|||
}
|
||||
}
|
||||
|
||||
func createCircularArc(edge *d2graph.Edge, nodeCircleRadius, maxNodeSize float64) {
|
||||
if edge.Src == nil || edge.Dst == nil {
|
||||
func createPerfectArc(edge *d2graph.Edge, baseRadius float64) {
|
||||
if edge.Src == nil || edge.Dst == nil || edge.Src == edge.Dst {
|
||||
return
|
||||
}
|
||||
|
||||
srcCenter := edge.Src.Center()
|
||||
dstCenter := edge.Dst.Center()
|
||||
center := geo.NewPoint(0, 0) // Layout center
|
||||
|
||||
// Calculate arc radius outside node circle
|
||||
arcRadius := nodeCircleRadius + maxNodeSize/2 + PADDING
|
||||
// Calculate angles with proper wrapping
|
||||
startAngle := math.Atan2(srcCenter.Y-center.Y, srcCenter.X-center.X)
|
||||
endAngle := math.Atan2(dstCenter.Y-center.Y, dstCenter.X-center.X)
|
||||
|
||||
// Calculate angles for arc endpoints
|
||||
srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
|
||||
dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
|
||||
if dstAngle < srcAngle {
|
||||
dstAngle += 2 * math.Pi
|
||||
// Handle angle wrapping for shortest path
|
||||
angleDiff := endAngle - startAngle
|
||||
if angleDiff < 0 {
|
||||
angleDiff += 2 * math.Pi
|
||||
}
|
||||
if angleDiff > math.Pi {
|
||||
angleDiff -= 2 * math.Pi
|
||||
}
|
||||
|
||||
// Generate arc path points
|
||||
// Generate perfect circular arc
|
||||
path := make([]*geo.Point, 0, ARC_STEPS+1)
|
||||
for i := 0; i <= ARC_STEPS; i++ {
|
||||
t := float64(i) / ARC_STEPS
|
||||
angle := srcAngle + t*(dstAngle-srcAngle)
|
||||
x := arcRadius * math.Cos(angle)
|
||||
y := arcRadius * math.Sin(angle)
|
||||
currentAngle := startAngle + t*angleDiff
|
||||
x := center.X + baseRadius*math.Cos(currentAngle)
|
||||
y := center.Y + baseRadius*math.Sin(currentAngle)
|
||||
path = append(path, geo.NewPoint(x, y))
|
||||
}
|
||||
|
||||
// Set exact endpoints (will be clipped later)
|
||||
path[0] = srcCenter
|
||||
path[len(path)-1] = dstCenter
|
||||
|
||||
// Clip path to node borders
|
||||
// Clip to shape boundaries while preserving arc
|
||||
edge.Route = path
|
||||
startIndex, endIndex := edge.TraceToShape(edge.Route, 0, len(edge.Route)-1)
|
||||
if startIndex < endIndex {
|
||||
edge.Route = edge.Route[startIndex : endIndex+1]
|
||||
startIdx, endIdx := edge.TraceToShape(edge.Route, 0, len(edge.Route)-1)
|
||||
|
||||
// Maintain smooth arc after clipping
|
||||
if startIdx < endIdx {
|
||||
edge.Route = edge.Route[startIdx : endIdx+1]
|
||||
|
||||
// Ensure minimum points for smooth rendering
|
||||
if len(edge.Route) < 3 {
|
||||
edge.Route = []*geo.Point{path[0], path[len(path)-1]}
|
||||
}
|
||||
}
|
||||
|
||||
edge.IsCurve = true
|
||||
}
|
||||
|
||||
// clampPointOutsideBox walks forward from 'startIdx' until the path segment
|
||||
// leaves the bounding box. Then it sets path[startIdx] to the intersection.
|
||||
// If we never find it, we return (startIdx, path[startIdx]) meaning we can't clamp.
|
||||
func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *geo.Point) {
|
||||
if startIdx >= len(path)-1 {
|
||||
return startIdx, path[startIdx]
|
||||
}
|
||||
// If path[startIdx] is outside, no clamp needed
|
||||
if !boxContains(box, path[startIdx]) {
|
||||
return startIdx, path[startIdx]
|
||||
}
|
||||
|
||||
// Walk forward looking for outside
|
||||
for i := startIdx + 1; i < len(path); i++ {
|
||||
insideNext := boxContains(box, path[i])
|
||||
if insideNext {
|
||||
// still inside -> keep going
|
||||
continue
|
||||
}
|
||||
// crossing from inside to outside between path[i-1], path[i]
|
||||
seg := geo.NewSegment(path[i-1], path[i])
|
||||
inters := boxIntersections(box, *seg)
|
||||
if len(inters) > 0 {
|
||||
// use first intersection
|
||||
return i, inters[0]
|
||||
}
|
||||
// fallback => no intersection found
|
||||
return i, path[i]
|
||||
}
|
||||
// entire remainder is inside, so we can't clamp
|
||||
// Just return the end
|
||||
last := len(path) - 1
|
||||
return last, path[last]
|
||||
}
|
||||
|
||||
// clampPointOutsideBoxReverse scans backward from endIdx while path[j] is in the box.
|
||||
// Once we find crossing (outside→inside), we return (j, intersection).
|
||||
func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (int, *geo.Point) {
|
||||
if endIdx <= 0 {
|
||||
return endIdx, path[endIdx]
|
||||
}
|
||||
if !boxContains(box, path[endIdx]) {
|
||||
// already outside
|
||||
return endIdx, path[endIdx]
|
||||
}
|
||||
|
||||
for j := endIdx - 1; j >= 0; j-- {
|
||||
if boxContains(box, path[j]) {
|
||||
continue
|
||||
}
|
||||
// crossing from outside -> inside between path[j], path[j+1]
|
||||
seg := geo.NewSegment(path[j], path[j+1])
|
||||
inters := boxIntersections(box, *seg)
|
||||
if len(inters) > 0 {
|
||||
return j, inters[0]
|
||||
}
|
||||
return j, path[j]
|
||||
}
|
||||
|
||||
// entire path inside
|
||||
return 0, path[0]
|
||||
}
|
||||
|
||||
// Helper if your geo.Box doesn’t implement Contains()
|
||||
func boxContains(b *geo.Box, p *geo.Point) bool {
|
||||
// typical bounding-box check
|
||||
return p.X >= b.TopLeft.X &&
|
||||
p.X <= b.TopLeft.X+b.Width &&
|
||||
p.Y >= b.TopLeft.Y &&
|
||||
p.Y <= b.TopLeft.Y+b.Height
|
||||
}
|
||||
|
||||
// Helper if your geo.Box doesn’t implement Intersections(geo.Segment) yet
|
||||
func boxIntersections(b *geo.Box, seg geo.Segment) []*geo.Point {
|
||||
// We'll assume d2's standard geo.Box has a built-in Intersections(*Segment) method.
|
||||
// If not, implement manually. For example, checking each of the 4 edges:
|
||||
// left, right, top, bottom
|
||||
// For simplicity, if you do have b.Intersections(...) you can just do:
|
||||
// return b.Intersections(seg)
|
||||
return b.Intersections(seg)
|
||||
// If you don't have that, you'd code the line-rect intersection yourself.
|
||||
}
|
||||
|
||||
// positionLabelsIcons is basically your logic that sets default label/icon positions if needed
|
||||
func positionLabelsIcons(obj *d2graph.Object) {
|
||||
// If there's an icon but no icon position, give it a default
|
||||
if obj.Icon != nil && obj.IconPosition == nil {
|
||||
|
|
@ -217,7 +371,6 @@ func positionLabelsIcons(obj *d2graph.Object) {
|
|||
}
|
||||
}
|
||||
|
||||
// If there's a label but no label position, give it a default
|
||||
if obj.HasLabel() && obj.LabelPosition == nil {
|
||||
if len(obj.ChildrenArray) > 0 {
|
||||
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
|
||||
|
|
@ -229,7 +382,6 @@ func positionLabelsIcons(obj *d2graph.Object) {
|
|||
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
|
||||
}
|
||||
|
||||
// If the label is bigger than the shape, fallback to outside positions
|
||||
if float64(obj.LabelDimensions.Width) > obj.Width ||
|
||||
float64(obj.LabelDimensions.Height) > obj.Height {
|
||||
if len(obj.ChildrenArray) > 0 {
|
||||
|
|
@ -240,3 +392,14 @@ func positionLabelsIcons(obj *d2graph.Object) {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
func boxContains(b *geo.Box, p *geo.Point) bool {
|
||||
return p.X >= b.TopLeft.X &&
|
||||
p.X <= b.TopLeft.X+b.Width &&
|
||||
p.Y >= b.TopLeft.Y &&
|
||||
p.Y <= b.TopLeft.Y+b.Height
|
||||
}
|
||||
|
||||
func boxIntersections(b *geo.Box, seg geo.Segment) []*geo.Point {
|
||||
return b.Intersections(seg)
|
||||
}
|
||||
1460
e2etests/testdata/txtar/cycle-diagram/dagre/board.exp.json
generated
vendored
1460
e2etests/testdata/txtar/cycle-diagram/dagre/board.exp.json
generated
vendored
File diff suppressed because it is too large
Load diff
File diff suppressed because one or more lines are too long
|
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 22 KiB |
1460
e2etests/testdata/txtar/cycle-diagram/elk/board.exp.json
generated
vendored
1460
e2etests/testdata/txtar/cycle-diagram/elk/board.exp.json
generated
vendored
File diff suppressed because it is too large
Load diff
File diff suppressed because one or more lines are too long
|
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 22 KiB |
Loading…
Reference in a new issue