Merge branch 'master' into render-priority

This commit is contained in:
Júlio César Batista 2022-11-30 11:26:29 -08:00
commit 5c9f87f64a
No known key found for this signature in database
GPG key ID: 10C4B861BF314878
5 changed files with 412 additions and 82 deletions

View file

@ -20,7 +20,7 @@ jobs:
- uses: actions/upload-artifact@v3
if: always()
with:
name: d2chaos-test
name: d2chaos
path: ./d2chaos/out
nofixups:
runs-on: ubuntu-latest

View file

@ -22,3 +22,8 @@ jobs:
env:
GITHUB_TOKEN: ${{ secrets._GITHUB_TOKEN }}
DISCORD_WEBHOOK_URL: ${{ secrets.DISCORD_WEBHOOK_URL }}
- uses: actions/upload-artifact@v3
if: always()
with:
name: d2chaos
path: ./d2chaos/out

View file

@ -3,7 +3,22 @@ package d2sequence
// leaves at least 25 units of space on the left/right when computing the space required between actors
const HORIZONTAL_PAD = 50.
// leaves at least 25 units of space on the top/bottom when computing the space required between edges
const VERTICAL_PAD = 50.
const MIN_ACTOR_DISTANCE = 200.
// min vertical distance between edges
const MIN_EDGE_DISTANCE = 100.
// default size
const SPAN_WIDTH = 20.
// small pad so that edges don't touch lifelines and spans
const SPAN_EDGE_PAD = 5.
// as the spans start getting nested, their size grows
const SPAN_DEPTH_GROW_FACTOR = 10.
// when a span has a single edge
const MIN_SPAN_HEIGHT = MIN_EDGE_DISTANCE / 2.

View file

@ -4,75 +4,120 @@ import (
"context"
"fmt"
"math"
"sort"
"oss.terrastruct.com/d2/d2graph"
"oss.terrastruct.com/d2/lib/geo"
"oss.terrastruct.com/d2/lib/go2"
"oss.terrastruct.com/d2/lib/label"
"oss.terrastruct.com/d2/lib/shape"
)
func Layout(ctx context.Context, g *d2graph.Graph) (err error) {
edgeYStep := MIN_EDGE_DISTANCE
actorXStep := MIN_ACTOR_DISTANCE
maxActorHeight := 0.
actorRank := make(map[*d2graph.Object]int)
for rank, actor := range g.Objects {
actorRank[actor] = rank
}
for _, edge := range g.Edges {
edgeYStep = math.Max(edgeYStep, float64(edge.LabelDimensions.Height)+HORIZONTAL_PAD)
maxActorHeight = math.Max(maxActorHeight, edge.Src.Height+HORIZONTAL_PAD)
maxActorHeight = math.Max(maxActorHeight, edge.Dst.Height+HORIZONTAL_PAD)
// ensures that long labels, spanning over multiple actors, don't make for large gaps between actors
// by distributing the label length across the actors rank difference
rankDiff := math.Abs(float64(actorRank[edge.Src]) - float64(actorRank[edge.Dst]))
distributedLabelWidth := float64(edge.LabelDimensions.Width) / rankDiff
actorXStep = math.Max(actorXStep, distributedLabelWidth+HORIZONTAL_PAD)
sd := &sequenceDiagram{
graph: g,
objectRank: make(map[*d2graph.Object]int),
minEdgeRank: make(map[*d2graph.Object]int),
maxEdgeRank: make(map[*d2graph.Object]int),
edgeYStep: MIN_EDGE_DISTANCE,
actorXStep: MIN_ACTOR_DISTANCE,
maxActorHeight: 0.,
}
placeActors(g.Objects, maxActorHeight, actorXStep)
routeEdges(g.Edges, maxActorHeight, edgeYStep)
addLifelineEdges(g, g.Objects, edgeYStep)
sd.init()
sd.placeActors()
sd.placeSpans()
sd.routeEdges()
sd.addLifelineEdges()
return nil
}
type sequenceDiagram struct {
graph *d2graph.Graph
edges []*d2graph.Edge
actors []*d2graph.Object
spans []*d2graph.Object
// can be either actors or spans
// rank: left to right position of actors/spans (spans have the same rank as their parents)
objectRank map[*d2graph.Object]int
// keep track of the first and last edge of a given actor
// the edge rank is the order in which it appears from top to bottom
minEdgeRank map[*d2graph.Object]int
maxEdgeRank map[*d2graph.Object]int
edgeYStep float64
actorXStep float64
maxActorHeight float64
}
func (sd *sequenceDiagram) init() {
sd.edges = make([]*d2graph.Edge, len(sd.graph.Edges))
copy(sd.edges, sd.graph.Edges)
queue := make([]*d2graph.Object, len(sd.graph.Root.ChildrenArray))
copy(queue, sd.graph.Root.ChildrenArray)
for len(queue) > 0 {
obj := queue[0]
queue = queue[1:]
if sd.isActor(obj) {
sd.actors = append(sd.actors, obj)
sd.objectRank[obj] = len(sd.actors)
sd.maxActorHeight = math.Max(sd.maxActorHeight, obj.Height)
} else {
// spans are always rectangles and have no labels
obj.Attributes.Label = d2graph.Scalar{Value: ""}
obj.Attributes.Shape = d2graph.Scalar{Value: shape.SQUARE_TYPE}
sd.spans = append(sd.spans, obj)
sd.objectRank[obj] = sd.objectRank[obj.Parent]
}
queue = append(queue, obj.ChildrenArray...)
}
for rank, edge := range sd.edges {
sd.edgeYStep = math.Max(sd.edgeYStep, float64(edge.LabelDimensions.Height))
sd.setMinMaxEdgeRank(edge.Src, rank)
sd.setMinMaxEdgeRank(edge.Dst, rank)
// ensures that long labels, spanning over multiple actors, don't make for large gaps between actors
// by distributing the label length across the actors rank difference
rankDiff := math.Abs(float64(sd.objectRank[edge.Src]) - float64(sd.objectRank[edge.Dst]))
distributedLabelWidth := float64(edge.LabelDimensions.Width) / rankDiff
sd.actorXStep = math.Max(sd.actorXStep, distributedLabelWidth+HORIZONTAL_PAD)
}
sd.maxActorHeight += VERTICAL_PAD
sd.edgeYStep += VERTICAL_PAD
}
func (sd *sequenceDiagram) setMinMaxEdgeRank(actor *d2graph.Object, rank int) {
if minRank, exists := sd.minEdgeRank[actor]; exists {
sd.minEdgeRank[actor] = go2.IntMin(minRank, rank)
} else {
sd.minEdgeRank[actor] = rank
}
sd.maxEdgeRank[actor] = go2.IntMax(sd.maxEdgeRank[actor], rank)
}
// placeActors places actors bottom aligned, side by side
func placeActors(actors []*d2graph.Object, maxHeight, xStep float64) {
func (sd *sequenceDiagram) placeActors() {
x := 0.
for _, actors := range actors {
yOffset := maxHeight - actors.Height
for _, actors := range sd.actors {
yOffset := sd.maxActorHeight - actors.Height
actors.TopLeft = geo.NewPoint(x, yOffset)
x += actors.Width + xStep
x += actors.Width + sd.actorXStep
actors.LabelPosition = go2.Pointer(string(label.InsideMiddleCenter))
}
}
// routeEdges routes horizontal edges from Src to Dst
func routeEdges(edgesInOrder []*d2graph.Edge, startY, yStep float64) {
edgeY := startY + yStep // in case the first edge has a tall label
for _, edge := range edgesInOrder {
start := edge.Src.Center()
start.Y = edgeY
end := edge.Dst.Center()
end.Y = edgeY
edge.Route = []*geo.Point{start, end}
edgeY += yStep
if edge.Attributes.Label.Value != "" {
isLeftToRight := edge.Src.TopLeft.X < edge.Dst.TopLeft.X
if isLeftToRight {
edge.LabelPosition = go2.Pointer(string(label.OutsideTopCenter))
} else {
edge.LabelPosition = go2.Pointer(string(label.OutsideBottomCenter))
}
}
}
}
// addLifelineEdges adds a new edge for each actor in the graph that represents the
// edge below the actor showing its lifespan
// addLifelineEdges adds a new edge for each actor in the graph that represents the its lifeline
// ┌──────────────┐
// │ actor │
// └──────┬───────┘
@ -80,14 +125,14 @@ func routeEdges(edgesInOrder []*d2graph.Edge, startY, yStep float64) {
// │ lifeline
// │
// │
func addLifelineEdges(g *d2graph.Graph, actors []*d2graph.Object, yStep float64) {
endY := g.Edges[len(g.Edges)-1].Route[0].Y + yStep
for _, actor := range actors {
func (sd *sequenceDiagram) addLifelineEdges() {
endY := sd.getEdgeY(len(sd.edges))
for _, actor := range sd.actors {
actorBottom := actor.Center()
actorBottom.Y = actor.TopLeft.Y + actor.Height
actorLifelineEnd := actor.Center()
actorLifelineEnd.Y = endY
g.Edges = append(g.Edges, &d2graph.Edge{
sd.graph.Edges = append(sd.graph.Edges, &d2graph.Edge{
Attributes: d2graph.Attributes{
Style: d2graph.Style{
StrokeDash: &d2graph.Scalar{Value: "10"},
@ -105,3 +150,130 @@ func addLifelineEdges(g *d2graph.Graph, actors []*d2graph.Object, yStep float64)
})
}
}
// placeSpans places spans over the object lifeline
// ┌──────────┐
// │ actor │
// └────┬─────┘
// ┌─┴──┐
// │ │
// |span|
// │ │
// └─┬──┘
// │
// lifeline
// │
func (sd *sequenceDiagram) placeSpans() {
// quickly find the span center X
rankToX := make(map[int]float64)
for _, actor := range sd.actors {
rankToX[sd.objectRank[actor]] = actor.Center().X
}
// places spans from most to least nested
// the order is important because the only way a child span exists is if there'e an edge to it
// however, the parent span might not have an edge to it and then its position is based on the child position
// or, there can be edge to it, but it comes after the child one meaning the top left position is still based on the child
// and not on its own edge
spanFromMostNested := make([]*d2graph.Object, len(sd.spans))
copy(spanFromMostNested, sd.spans)
sort.SliceStable(spanFromMostNested, func(i, j int) bool {
return spanFromMostNested[i].Level() > spanFromMostNested[j].Level()
})
for _, span := range spanFromMostNested {
// finds the position based on children
minChildY := math.Inf(1)
maxChildY := math.Inf(-1)
for _, child := range span.ChildrenArray {
minChildY = math.Min(minChildY, child.TopLeft.Y)
maxChildY = math.Max(maxChildY, child.TopLeft.Y+child.Height)
}
// finds the position if there are edges to this span
minEdgeY := math.Inf(1)
if minRank, exists := sd.minEdgeRank[span]; exists {
minEdgeY = sd.getEdgeY(minRank)
}
maxEdgeY := math.Inf(-1)
if maxRank, exists := sd.maxEdgeRank[span]; exists {
maxEdgeY = sd.getEdgeY(maxRank)
}
// if it is the same as the child top left, add some padding
minY := math.Min(minEdgeY, minChildY)
if minY == minChildY {
minY -= SPAN_DEPTH_GROW_FACTOR
} else {
minY -= SPAN_EDGE_PAD
}
maxY := math.Max(maxEdgeY, maxChildY)
if maxY == maxChildY {
maxY += SPAN_DEPTH_GROW_FACTOR
} else {
maxY += SPAN_EDGE_PAD
}
height := math.Max(maxY-minY, MIN_SPAN_HEIGHT)
// -2 because the actors count as level 1 making the first level span getting 2*SPAN_DEPTH_GROW_FACTOR
width := SPAN_WIDTH + (float64(span.Level()-2) * SPAN_DEPTH_GROW_FACTOR)
x := rankToX[sd.objectRank[span]] - (width / 2.)
span.Box = geo.NewBox(geo.NewPoint(x, minY), width, height)
}
}
// routeEdges routes horizontal edges from Src to Dst
func (sd *sequenceDiagram) routeEdges() {
for rank, edge := range sd.edges {
isLeftToRight := edge.Src.TopLeft.X < edge.Dst.TopLeft.X
// finds the proper anchor point based on the edge direction
var startX, endX float64
if sd.isActor(edge.Src) {
startX = edge.Src.Center().X
} else if isLeftToRight {
startX = edge.Src.TopLeft.X + edge.Src.Width
} else {
startX = edge.Src.TopLeft.X
}
if sd.isActor(edge.Dst) {
endX = edge.Dst.Center().X
} else if isLeftToRight {
endX = edge.Dst.TopLeft.X
} else {
endX = edge.Dst.TopLeft.X + edge.Dst.Width
}
if isLeftToRight {
startX += SPAN_EDGE_PAD
endX -= SPAN_EDGE_PAD
} else {
startX -= SPAN_EDGE_PAD
endX += SPAN_EDGE_PAD
}
edgeY := sd.getEdgeY(rank)
edge.Route = []*geo.Point{
geo.NewPoint(startX, edgeY),
geo.NewPoint(endX, edgeY),
}
if edge.Attributes.Label.Value != "" {
if isLeftToRight {
edge.LabelPosition = go2.Pointer(string(label.OutsideTopCenter))
} else {
// the label will be placed above the edge because the orientation is based on the edge normal vector
edge.LabelPosition = go2.Pointer(string(label.OutsideBottomCenter))
}
}
}
}
func (sd *sequenceDiagram) getEdgeY(rank int) float64 {
// +1 so that the first edge has the top padding for its label
return ((float64(rank) + 1.) * sd.edgeYStep) + sd.maxActorHeight
}
func (sd *sequenceDiagram) isActor(obj *d2graph.Object) bool {
return obj.Parent == sd.graph.Root
}

View file

@ -6,38 +6,52 @@ import (
"oss.terrastruct.com/d2/d2graph"
"oss.terrastruct.com/d2/lib/geo"
"oss.terrastruct.com/d2/lib/label"
"oss.terrastruct.com/d2/lib/log"
"oss.terrastruct.com/d2/lib/shape"
)
func TestLayout(t *testing.T) {
func TestBasicSequenceDiagram(t *testing.T) {
// ┌────────┐ ┌────────┐
// │ n1 │ │ n2 │
// └────┬───┘ └────┬───┘
// │ │
// ├───────────────────────►
// │ │
// ◄───────────────────────┤
// │ │
// ├───────────────────────►
// │ │
// ◄───────────────────────┤
// │ │
g := d2graph.NewGraph(nil)
g.Objects = []*d2graph.Object{
{
ID: "Alice",
Box: geo.NewBox(nil, 100, 100),
},
{
ID: "Bob",
Box: geo.NewBox(nil, 30, 30),
},
}
n1 := g.Root.EnsureChild([]string{"n1"})
n1.Box = geo.NewBox(nil, 100, 100)
n2 := g.Root.EnsureChild([]string{"n2"})
n2.Box = geo.NewBox(nil, 30, 30)
g.Edges = []*d2graph.Edge{
{
Src: g.Objects[0],
Dst: g.Objects[1],
Src: n1,
Dst: n2,
Attributes: d2graph.Attributes{
Label: d2graph.Scalar{Value: "left to right"},
},
},
{
Src: g.Objects[1],
Dst: g.Objects[0],
Src: n2,
Dst: n1,
Attributes: d2graph.Attributes{
Label: d2graph.Scalar{Value: "right to left"},
},
},
{
Src: g.Objects[0],
Dst: g.Objects[1],
Src: n1,
Dst: n2,
},
{
Src: g.Objects[1],
Dst: g.Objects[0],
Src: n2,
Dst: n1,
},
}
nEdges := len(g.Edges)
@ -76,11 +90,23 @@ func TestLayout(t *testing.T) {
if edge.Route[0].Y != edge.Route[1].Y {
t.Fatalf("expected edge[%d] to be a horizontal line", i)
}
if edge.Route[0].X != edge.Src.Center().X {
t.Fatalf("expected edge[%d] source endpoint to be at the middle of the source actor", i)
}
if edge.Route[1].X != edge.Dst.Center().X {
t.Fatalf("expected edge[%d] target endpoint to be at the middle of the target actor", i)
if edge.Src.TopLeft.X < edge.Dst.TopLeft.X {
// left to right
if edge.Route[0].X != edge.Src.Center().X+SPAN_EDGE_PAD {
t.Fatalf("expected edge[%d] x to be at the actor center", i)
}
if edge.Route[1].X != edge.Dst.Center().X-SPAN_EDGE_PAD {
t.Fatalf("expected edge[%d] x to be at the actor center", i)
}
} else {
if edge.Route[0].X != edge.Src.Center().X-SPAN_EDGE_PAD {
t.Fatalf("expected edge[%d] x to be at the actor center", i)
}
if edge.Route[1].X != edge.Dst.Center().X+SPAN_EDGE_PAD {
t.Fatalf("expected edge[%d] x to be at the actor center", i)
}
}
if i > 0 {
prevEdge := g.Edges[i-1]
@ -94,19 +120,131 @@ func TestLayout(t *testing.T) {
for i := nEdges; i < nExpectedEdges; i++ {
edge := g.Edges[i]
if len(edge.Route) != 2 {
t.Fatalf("expected edge[%d] to have only 2 points", i)
t.Fatalf("expected lifeline edge[%d] to have only 2 points", i)
}
if edge.Route[0].X != edge.Route[1].X {
t.Fatalf("expected edge[%d] to be a vertical line", i)
t.Fatalf("expected lifeline edge[%d] to be a vertical line", i)
}
if edge.Route[0].X != edge.Src.Center().X {
t.Fatalf("expected edge[%d] x to be at the actor center", i)
t.Fatalf("expected lifeline edge[%d] x to be at the actor center", i)
}
if edge.Route[0].Y != edge.Src.Height+edge.Src.TopLeft.Y {
t.Fatalf("expected edge[%d] to start at the bottom of the source actor", i)
t.Fatalf("expected lifeline edge[%d] to start at the bottom of the source actor", i)
}
if edge.Route[1].Y < lastSequenceEdge.Route[0].Y {
t.Fatalf("expected edge[%d] to end after the last sequence edge", i)
t.Fatalf("expected lifeline edge[%d] to end after the last sequence edge", i)
}
}
// check label positions
if *g.Edges[0].LabelPosition != string(label.OutsideTopCenter) {
t.Fatalf("expected edge label to be placed on %s, got %s", string(label.OutsideTopCenter), *g.Edges[0].LabelPosition)
}
if *g.Edges[1].LabelPosition != string(label.OutsideBottomCenter) {
t.Fatalf("expected edge label to be placed on %s, got %s", string(label.OutsideBottomCenter), *g.Edges[0].LabelPosition)
}
}
func TestSpansSequenceDiagram(t *testing.T) {
// ┌─────┐ ┌─────┐
// │ a │ │ b │
// └──┬──┘ └──┬──┘
// ├┐────────────────────►┌┤
// t1 ││ ││ t1
// ├┘◄────────────────────└┤
// ├┐──────────────────────►
// t2 ││ │
// ├┘◄─────────────────────┤
g := d2graph.NewGraph(nil)
a := g.Root.EnsureChild([]string{"a"})
a.Box = geo.NewBox(nil, 100, 100)
a.Attributes = d2graph.Attributes{
Shape: d2graph.Scalar{Value: shape.PERSON_TYPE},
}
a_t1 := a.EnsureChild([]string{"t1"})
a_t1.Attributes = d2graph.Attributes{
Shape: d2graph.Scalar{Value: shape.DIAMOND_TYPE},
Label: d2graph.Scalar{Value: "label"},
}
a_t2 := a.EnsureChild([]string{"t2"})
b := g.Root.EnsureChild([]string{"b"})
b.Box = geo.NewBox(nil, 30, 30)
b_t1 := b.EnsureChild([]string{"t1"})
g.Edges = []*d2graph.Edge{
{
Src: a_t1,
Dst: b_t1,
}, {
Src: b_t1,
Dst: a_t1,
}, {
Src: a_t2,
Dst: b,
}, {
Src: b,
Dst: a_t2,
},
}
ctx := log.WithTB(context.Background(), t, nil)
Layout(ctx, g)
// check properties
if a.Attributes.Shape.Value != shape.PERSON_TYPE {
t.Fatal("actor a shape changed")
}
if a_t1.Attributes.Label.Value != "" {
t.Fatalf("expected no label for span, got %s", a_t1.Attributes.Label.Value)
}
if a_t1.Attributes.Shape.Value != shape.SQUARE_TYPE {
t.Fatalf("expected square shape for span, got %s", a_t1.Attributes.Shape.Value)
}
if a_t1.Height != b_t1.Height {
t.Fatalf("expected a.t1 and b.t1 to have the same height, got %.5f and %.5f", a_t1.Height, b_t1.Height)
}
// Y diff of the 2 first edges
expectedHeight := g.Edges[1].Route[0].Y - g.Edges[0].Route[0].Y + (2 * SPAN_EDGE_PAD)
if a_t1.Height != expectedHeight {
t.Fatalf("expected a.t1 height to be %.5f, got %.5f", expectedHeight, a_t1.Height)
}
if a_t1.Width != SPAN_WIDTH {
t.Fatalf("expected span width to be %.5f, got %.5f", SPAN_WIDTH, a_t1.Width)
}
// check positions
if a.Center().X != a_t1.Center().X {
t.Fatal("expected a_t1.X = a.X")
}
if a.Center().X != a_t2.Center().X {
t.Fatal("expected a_t2.X = a.X")
}
if b.Center().X != b_t1.Center().X {
t.Fatal("expected b_t1.X = b.X")
}
if a_t1.TopLeft.Y != b_t1.TopLeft.Y {
t.Fatal("expected a.t1 and b.t1 to be placed at the same Y")
}
if a_t1.TopLeft.Y != g.Edges[0].Route[0].Y-SPAN_EDGE_PAD {
t.Fatal("expected a.t1 to be placed at the same Y of the first edge")
}
// check routes
if g.Edges[0].Route[0].X != a_t1.TopLeft.X+a_t1.Width+SPAN_EDGE_PAD {
t.Fatal("expected the first edge to start on a.t1 top right X")
}
if g.Edges[0].Route[1].X != b_t1.TopLeft.X-SPAN_EDGE_PAD {
t.Fatal("expected the first edge to end on b.t1 top left X")
}
if g.Edges[2].Route[1].X != b.Center().X-SPAN_EDGE_PAD {
t.Fatal("expected the third edge to end on b.t1 center X")
}
}