Merge branch 'master' into render-priority
This commit is contained in:
commit
5c9f87f64a
5 changed files with 412 additions and 82 deletions
2
.github/workflows/ci.yml
vendored
2
.github/workflows/ci.yml
vendored
|
|
@ -20,7 +20,7 @@ jobs:
|
|||
- uses: actions/upload-artifact@v3
|
||||
if: always()
|
||||
with:
|
||||
name: d2chaos-test
|
||||
name: d2chaos
|
||||
path: ./d2chaos/out
|
||||
nofixups:
|
||||
runs-on: ubuntu-latest
|
||||
|
|
|
|||
5
.github/workflows/daily.yml
vendored
5
.github/workflows/daily.yml
vendored
|
|
@ -22,3 +22,8 @@ jobs:
|
|||
env:
|
||||
GITHUB_TOKEN: ${{ secrets._GITHUB_TOKEN }}
|
||||
DISCORD_WEBHOOK_URL: ${{ secrets.DISCORD_WEBHOOK_URL }}
|
||||
- uses: actions/upload-artifact@v3
|
||||
if: always()
|
||||
with:
|
||||
name: d2chaos
|
||||
path: ./d2chaos/out
|
||||
|
|
|
|||
|
|
@ -3,7 +3,22 @@ package d2sequence
|
|||
// leaves at least 25 units of space on the left/right when computing the space required between actors
|
||||
const HORIZONTAL_PAD = 50.
|
||||
|
||||
// leaves at least 25 units of space on the top/bottom when computing the space required between edges
|
||||
const VERTICAL_PAD = 50.
|
||||
|
||||
const MIN_ACTOR_DISTANCE = 200.
|
||||
|
||||
// min vertical distance between edges
|
||||
const MIN_EDGE_DISTANCE = 100.
|
||||
|
||||
// default size
|
||||
const SPAN_WIDTH = 20.
|
||||
|
||||
// small pad so that edges don't touch lifelines and spans
|
||||
const SPAN_EDGE_PAD = 5.
|
||||
|
||||
// as the spans start getting nested, their size grows
|
||||
const SPAN_DEPTH_GROW_FACTOR = 10.
|
||||
|
||||
// when a span has a single edge
|
||||
const MIN_SPAN_HEIGHT = MIN_EDGE_DISTANCE / 2.
|
||||
|
|
|
|||
|
|
@ -4,75 +4,120 @@ import (
|
|||
"context"
|
||||
"fmt"
|
||||
"math"
|
||||
"sort"
|
||||
|
||||
"oss.terrastruct.com/d2/d2graph"
|
||||
"oss.terrastruct.com/d2/lib/geo"
|
||||
"oss.terrastruct.com/d2/lib/go2"
|
||||
"oss.terrastruct.com/d2/lib/label"
|
||||
"oss.terrastruct.com/d2/lib/shape"
|
||||
)
|
||||
|
||||
func Layout(ctx context.Context, g *d2graph.Graph) (err error) {
|
||||
edgeYStep := MIN_EDGE_DISTANCE
|
||||
actorXStep := MIN_ACTOR_DISTANCE
|
||||
maxActorHeight := 0.
|
||||
|
||||
actorRank := make(map[*d2graph.Object]int)
|
||||
for rank, actor := range g.Objects {
|
||||
actorRank[actor] = rank
|
||||
}
|
||||
for _, edge := range g.Edges {
|
||||
edgeYStep = math.Max(edgeYStep, float64(edge.LabelDimensions.Height)+HORIZONTAL_PAD)
|
||||
maxActorHeight = math.Max(maxActorHeight, edge.Src.Height+HORIZONTAL_PAD)
|
||||
maxActorHeight = math.Max(maxActorHeight, edge.Dst.Height+HORIZONTAL_PAD)
|
||||
// ensures that long labels, spanning over multiple actors, don't make for large gaps between actors
|
||||
// by distributing the label length across the actors rank difference
|
||||
rankDiff := math.Abs(float64(actorRank[edge.Src]) - float64(actorRank[edge.Dst]))
|
||||
distributedLabelWidth := float64(edge.LabelDimensions.Width) / rankDiff
|
||||
actorXStep = math.Max(actorXStep, distributedLabelWidth+HORIZONTAL_PAD)
|
||||
sd := &sequenceDiagram{
|
||||
graph: g,
|
||||
objectRank: make(map[*d2graph.Object]int),
|
||||
minEdgeRank: make(map[*d2graph.Object]int),
|
||||
maxEdgeRank: make(map[*d2graph.Object]int),
|
||||
edgeYStep: MIN_EDGE_DISTANCE,
|
||||
actorXStep: MIN_ACTOR_DISTANCE,
|
||||
maxActorHeight: 0.,
|
||||
}
|
||||
|
||||
placeActors(g.Objects, maxActorHeight, actorXStep)
|
||||
routeEdges(g.Edges, maxActorHeight, edgeYStep)
|
||||
addLifelineEdges(g, g.Objects, edgeYStep)
|
||||
sd.init()
|
||||
sd.placeActors()
|
||||
sd.placeSpans()
|
||||
sd.routeEdges()
|
||||
sd.addLifelineEdges()
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
type sequenceDiagram struct {
|
||||
graph *d2graph.Graph
|
||||
|
||||
edges []*d2graph.Edge
|
||||
actors []*d2graph.Object
|
||||
spans []*d2graph.Object
|
||||
|
||||
// can be either actors or spans
|
||||
// rank: left to right position of actors/spans (spans have the same rank as their parents)
|
||||
objectRank map[*d2graph.Object]int
|
||||
|
||||
// keep track of the first and last edge of a given actor
|
||||
// the edge rank is the order in which it appears from top to bottom
|
||||
minEdgeRank map[*d2graph.Object]int
|
||||
maxEdgeRank map[*d2graph.Object]int
|
||||
|
||||
edgeYStep float64
|
||||
actorXStep float64
|
||||
maxActorHeight float64
|
||||
}
|
||||
|
||||
func (sd *sequenceDiagram) init() {
|
||||
sd.edges = make([]*d2graph.Edge, len(sd.graph.Edges))
|
||||
copy(sd.edges, sd.graph.Edges)
|
||||
|
||||
queue := make([]*d2graph.Object, len(sd.graph.Root.ChildrenArray))
|
||||
copy(queue, sd.graph.Root.ChildrenArray)
|
||||
for len(queue) > 0 {
|
||||
obj := queue[0]
|
||||
queue = queue[1:]
|
||||
|
||||
if sd.isActor(obj) {
|
||||
sd.actors = append(sd.actors, obj)
|
||||
sd.objectRank[obj] = len(sd.actors)
|
||||
sd.maxActorHeight = math.Max(sd.maxActorHeight, obj.Height)
|
||||
} else {
|
||||
// spans are always rectangles and have no labels
|
||||
obj.Attributes.Label = d2graph.Scalar{Value: ""}
|
||||
obj.Attributes.Shape = d2graph.Scalar{Value: shape.SQUARE_TYPE}
|
||||
sd.spans = append(sd.spans, obj)
|
||||
sd.objectRank[obj] = sd.objectRank[obj.Parent]
|
||||
}
|
||||
|
||||
queue = append(queue, obj.ChildrenArray...)
|
||||
}
|
||||
|
||||
for rank, edge := range sd.edges {
|
||||
sd.edgeYStep = math.Max(sd.edgeYStep, float64(edge.LabelDimensions.Height))
|
||||
|
||||
sd.setMinMaxEdgeRank(edge.Src, rank)
|
||||
sd.setMinMaxEdgeRank(edge.Dst, rank)
|
||||
|
||||
// ensures that long labels, spanning over multiple actors, don't make for large gaps between actors
|
||||
// by distributing the label length across the actors rank difference
|
||||
rankDiff := math.Abs(float64(sd.objectRank[edge.Src]) - float64(sd.objectRank[edge.Dst]))
|
||||
distributedLabelWidth := float64(edge.LabelDimensions.Width) / rankDiff
|
||||
sd.actorXStep = math.Max(sd.actorXStep, distributedLabelWidth+HORIZONTAL_PAD)
|
||||
}
|
||||
|
||||
sd.maxActorHeight += VERTICAL_PAD
|
||||
sd.edgeYStep += VERTICAL_PAD
|
||||
}
|
||||
|
||||
func (sd *sequenceDiagram) setMinMaxEdgeRank(actor *d2graph.Object, rank int) {
|
||||
if minRank, exists := sd.minEdgeRank[actor]; exists {
|
||||
sd.minEdgeRank[actor] = go2.IntMin(minRank, rank)
|
||||
} else {
|
||||
sd.minEdgeRank[actor] = rank
|
||||
}
|
||||
|
||||
sd.maxEdgeRank[actor] = go2.IntMax(sd.maxEdgeRank[actor], rank)
|
||||
}
|
||||
|
||||
// placeActors places actors bottom aligned, side by side
|
||||
func placeActors(actors []*d2graph.Object, maxHeight, xStep float64) {
|
||||
func (sd *sequenceDiagram) placeActors() {
|
||||
x := 0.
|
||||
for _, actors := range actors {
|
||||
yOffset := maxHeight - actors.Height
|
||||
for _, actors := range sd.actors {
|
||||
yOffset := sd.maxActorHeight - actors.Height
|
||||
actors.TopLeft = geo.NewPoint(x, yOffset)
|
||||
x += actors.Width + xStep
|
||||
x += actors.Width + sd.actorXStep
|
||||
actors.LabelPosition = go2.Pointer(string(label.InsideMiddleCenter))
|
||||
}
|
||||
}
|
||||
|
||||
// routeEdges routes horizontal edges from Src to Dst
|
||||
func routeEdges(edgesInOrder []*d2graph.Edge, startY, yStep float64) {
|
||||
edgeY := startY + yStep // in case the first edge has a tall label
|
||||
for _, edge := range edgesInOrder {
|
||||
start := edge.Src.Center()
|
||||
start.Y = edgeY
|
||||
end := edge.Dst.Center()
|
||||
end.Y = edgeY
|
||||
edge.Route = []*geo.Point{start, end}
|
||||
edgeY += yStep
|
||||
|
||||
if edge.Attributes.Label.Value != "" {
|
||||
isLeftToRight := edge.Src.TopLeft.X < edge.Dst.TopLeft.X
|
||||
if isLeftToRight {
|
||||
edge.LabelPosition = go2.Pointer(string(label.OutsideTopCenter))
|
||||
} else {
|
||||
edge.LabelPosition = go2.Pointer(string(label.OutsideBottomCenter))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// addLifelineEdges adds a new edge for each actor in the graph that represents the
|
||||
// edge below the actor showing its lifespan
|
||||
// addLifelineEdges adds a new edge for each actor in the graph that represents the its lifeline
|
||||
// ┌──────────────┐
|
||||
// │ actor │
|
||||
// └──────┬───────┘
|
||||
|
|
@ -80,14 +125,14 @@ func routeEdges(edgesInOrder []*d2graph.Edge, startY, yStep float64) {
|
|||
// │ lifeline
|
||||
// │
|
||||
// │
|
||||
func addLifelineEdges(g *d2graph.Graph, actors []*d2graph.Object, yStep float64) {
|
||||
endY := g.Edges[len(g.Edges)-1].Route[0].Y + yStep
|
||||
for _, actor := range actors {
|
||||
func (sd *sequenceDiagram) addLifelineEdges() {
|
||||
endY := sd.getEdgeY(len(sd.edges))
|
||||
for _, actor := range sd.actors {
|
||||
actorBottom := actor.Center()
|
||||
actorBottom.Y = actor.TopLeft.Y + actor.Height
|
||||
actorLifelineEnd := actor.Center()
|
||||
actorLifelineEnd.Y = endY
|
||||
g.Edges = append(g.Edges, &d2graph.Edge{
|
||||
sd.graph.Edges = append(sd.graph.Edges, &d2graph.Edge{
|
||||
Attributes: d2graph.Attributes{
|
||||
Style: d2graph.Style{
|
||||
StrokeDash: &d2graph.Scalar{Value: "10"},
|
||||
|
|
@ -105,3 +150,130 @@ func addLifelineEdges(g *d2graph.Graph, actors []*d2graph.Object, yStep float64)
|
|||
})
|
||||
}
|
||||
}
|
||||
|
||||
// placeSpans places spans over the object lifeline
|
||||
// ┌──────────┐
|
||||
// │ actor │
|
||||
// └────┬─────┘
|
||||
// ┌─┴──┐
|
||||
// │ │
|
||||
// |span|
|
||||
// │ │
|
||||
// └─┬──┘
|
||||
// │
|
||||
// lifeline
|
||||
// │
|
||||
func (sd *sequenceDiagram) placeSpans() {
|
||||
// quickly find the span center X
|
||||
rankToX := make(map[int]float64)
|
||||
for _, actor := range sd.actors {
|
||||
rankToX[sd.objectRank[actor]] = actor.Center().X
|
||||
}
|
||||
|
||||
// places spans from most to least nested
|
||||
// the order is important because the only way a child span exists is if there'e an edge to it
|
||||
// however, the parent span might not have an edge to it and then its position is based on the child position
|
||||
// or, there can be edge to it, but it comes after the child one meaning the top left position is still based on the child
|
||||
// and not on its own edge
|
||||
spanFromMostNested := make([]*d2graph.Object, len(sd.spans))
|
||||
copy(spanFromMostNested, sd.spans)
|
||||
sort.SliceStable(spanFromMostNested, func(i, j int) bool {
|
||||
return spanFromMostNested[i].Level() > spanFromMostNested[j].Level()
|
||||
})
|
||||
for _, span := range spanFromMostNested {
|
||||
// finds the position based on children
|
||||
minChildY := math.Inf(1)
|
||||
maxChildY := math.Inf(-1)
|
||||
for _, child := range span.ChildrenArray {
|
||||
minChildY = math.Min(minChildY, child.TopLeft.Y)
|
||||
maxChildY = math.Max(maxChildY, child.TopLeft.Y+child.Height)
|
||||
}
|
||||
|
||||
// finds the position if there are edges to this span
|
||||
minEdgeY := math.Inf(1)
|
||||
if minRank, exists := sd.minEdgeRank[span]; exists {
|
||||
minEdgeY = sd.getEdgeY(minRank)
|
||||
}
|
||||
maxEdgeY := math.Inf(-1)
|
||||
if maxRank, exists := sd.maxEdgeRank[span]; exists {
|
||||
maxEdgeY = sd.getEdgeY(maxRank)
|
||||
}
|
||||
|
||||
// if it is the same as the child top left, add some padding
|
||||
minY := math.Min(minEdgeY, minChildY)
|
||||
if minY == minChildY {
|
||||
minY -= SPAN_DEPTH_GROW_FACTOR
|
||||
} else {
|
||||
minY -= SPAN_EDGE_PAD
|
||||
}
|
||||
maxY := math.Max(maxEdgeY, maxChildY)
|
||||
if maxY == maxChildY {
|
||||
maxY += SPAN_DEPTH_GROW_FACTOR
|
||||
} else {
|
||||
maxY += SPAN_EDGE_PAD
|
||||
}
|
||||
|
||||
height := math.Max(maxY-minY, MIN_SPAN_HEIGHT)
|
||||
// -2 because the actors count as level 1 making the first level span getting 2*SPAN_DEPTH_GROW_FACTOR
|
||||
width := SPAN_WIDTH + (float64(span.Level()-2) * SPAN_DEPTH_GROW_FACTOR)
|
||||
x := rankToX[sd.objectRank[span]] - (width / 2.)
|
||||
span.Box = geo.NewBox(geo.NewPoint(x, minY), width, height)
|
||||
}
|
||||
}
|
||||
|
||||
// routeEdges routes horizontal edges from Src to Dst
|
||||
func (sd *sequenceDiagram) routeEdges() {
|
||||
for rank, edge := range sd.edges {
|
||||
isLeftToRight := edge.Src.TopLeft.X < edge.Dst.TopLeft.X
|
||||
|
||||
// finds the proper anchor point based on the edge direction
|
||||
var startX, endX float64
|
||||
if sd.isActor(edge.Src) {
|
||||
startX = edge.Src.Center().X
|
||||
} else if isLeftToRight {
|
||||
startX = edge.Src.TopLeft.X + edge.Src.Width
|
||||
} else {
|
||||
startX = edge.Src.TopLeft.X
|
||||
}
|
||||
|
||||
if sd.isActor(edge.Dst) {
|
||||
endX = edge.Dst.Center().X
|
||||
} else if isLeftToRight {
|
||||
endX = edge.Dst.TopLeft.X
|
||||
} else {
|
||||
endX = edge.Dst.TopLeft.X + edge.Dst.Width
|
||||
}
|
||||
|
||||
if isLeftToRight {
|
||||
startX += SPAN_EDGE_PAD
|
||||
endX -= SPAN_EDGE_PAD
|
||||
} else {
|
||||
startX -= SPAN_EDGE_PAD
|
||||
endX += SPAN_EDGE_PAD
|
||||
}
|
||||
|
||||
edgeY := sd.getEdgeY(rank)
|
||||
edge.Route = []*geo.Point{
|
||||
geo.NewPoint(startX, edgeY),
|
||||
geo.NewPoint(endX, edgeY),
|
||||
}
|
||||
|
||||
if edge.Attributes.Label.Value != "" {
|
||||
if isLeftToRight {
|
||||
edge.LabelPosition = go2.Pointer(string(label.OutsideTopCenter))
|
||||
} else {
|
||||
// the label will be placed above the edge because the orientation is based on the edge normal vector
|
||||
edge.LabelPosition = go2.Pointer(string(label.OutsideBottomCenter))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (sd *sequenceDiagram) getEdgeY(rank int) float64 {
|
||||
// +1 so that the first edge has the top padding for its label
|
||||
return ((float64(rank) + 1.) * sd.edgeYStep) + sd.maxActorHeight
|
||||
}
|
||||
|
||||
func (sd *sequenceDiagram) isActor(obj *d2graph.Object) bool {
|
||||
return obj.Parent == sd.graph.Root
|
||||
}
|
||||
|
|
|
|||
|
|
@ -6,38 +6,52 @@ import (
|
|||
|
||||
"oss.terrastruct.com/d2/d2graph"
|
||||
"oss.terrastruct.com/d2/lib/geo"
|
||||
"oss.terrastruct.com/d2/lib/label"
|
||||
"oss.terrastruct.com/d2/lib/log"
|
||||
"oss.terrastruct.com/d2/lib/shape"
|
||||
)
|
||||
|
||||
func TestLayout(t *testing.T) {
|
||||
func TestBasicSequenceDiagram(t *testing.T) {
|
||||
// ┌────────┐ ┌────────┐
|
||||
// │ n1 │ │ n2 │
|
||||
// └────┬───┘ └────┬───┘
|
||||
// │ │
|
||||
// ├───────────────────────►
|
||||
// │ │
|
||||
// ◄───────────────────────┤
|
||||
// │ │
|
||||
// ├───────────────────────►
|
||||
// │ │
|
||||
// ◄───────────────────────┤
|
||||
// │ │
|
||||
g := d2graph.NewGraph(nil)
|
||||
g.Objects = []*d2graph.Object{
|
||||
{
|
||||
ID: "Alice",
|
||||
Box: geo.NewBox(nil, 100, 100),
|
||||
},
|
||||
{
|
||||
ID: "Bob",
|
||||
Box: geo.NewBox(nil, 30, 30),
|
||||
},
|
||||
}
|
||||
n1 := g.Root.EnsureChild([]string{"n1"})
|
||||
n1.Box = geo.NewBox(nil, 100, 100)
|
||||
n2 := g.Root.EnsureChild([]string{"n2"})
|
||||
n2.Box = geo.NewBox(nil, 30, 30)
|
||||
|
||||
g.Edges = []*d2graph.Edge{
|
||||
{
|
||||
Src: g.Objects[0],
|
||||
Dst: g.Objects[1],
|
||||
Src: n1,
|
||||
Dst: n2,
|
||||
Attributes: d2graph.Attributes{
|
||||
Label: d2graph.Scalar{Value: "left to right"},
|
||||
},
|
||||
},
|
||||
{
|
||||
Src: g.Objects[1],
|
||||
Dst: g.Objects[0],
|
||||
Src: n2,
|
||||
Dst: n1,
|
||||
Attributes: d2graph.Attributes{
|
||||
Label: d2graph.Scalar{Value: "right to left"},
|
||||
},
|
||||
},
|
||||
{
|
||||
Src: g.Objects[0],
|
||||
Dst: g.Objects[1],
|
||||
Src: n1,
|
||||
Dst: n2,
|
||||
},
|
||||
{
|
||||
Src: g.Objects[1],
|
||||
Dst: g.Objects[0],
|
||||
Src: n2,
|
||||
Dst: n1,
|
||||
},
|
||||
}
|
||||
nEdges := len(g.Edges)
|
||||
|
|
@ -76,11 +90,23 @@ func TestLayout(t *testing.T) {
|
|||
if edge.Route[0].Y != edge.Route[1].Y {
|
||||
t.Fatalf("expected edge[%d] to be a horizontal line", i)
|
||||
}
|
||||
if edge.Route[0].X != edge.Src.Center().X {
|
||||
t.Fatalf("expected edge[%d] source endpoint to be at the middle of the source actor", i)
|
||||
}
|
||||
if edge.Route[1].X != edge.Dst.Center().X {
|
||||
t.Fatalf("expected edge[%d] target endpoint to be at the middle of the target actor", i)
|
||||
if edge.Src.TopLeft.X < edge.Dst.TopLeft.X {
|
||||
// left to right
|
||||
if edge.Route[0].X != edge.Src.Center().X+SPAN_EDGE_PAD {
|
||||
t.Fatalf("expected edge[%d] x to be at the actor center", i)
|
||||
}
|
||||
|
||||
if edge.Route[1].X != edge.Dst.Center().X-SPAN_EDGE_PAD {
|
||||
t.Fatalf("expected edge[%d] x to be at the actor center", i)
|
||||
}
|
||||
} else {
|
||||
if edge.Route[0].X != edge.Src.Center().X-SPAN_EDGE_PAD {
|
||||
t.Fatalf("expected edge[%d] x to be at the actor center", i)
|
||||
}
|
||||
|
||||
if edge.Route[1].X != edge.Dst.Center().X+SPAN_EDGE_PAD {
|
||||
t.Fatalf("expected edge[%d] x to be at the actor center", i)
|
||||
}
|
||||
}
|
||||
if i > 0 {
|
||||
prevEdge := g.Edges[i-1]
|
||||
|
|
@ -94,19 +120,131 @@ func TestLayout(t *testing.T) {
|
|||
for i := nEdges; i < nExpectedEdges; i++ {
|
||||
edge := g.Edges[i]
|
||||
if len(edge.Route) != 2 {
|
||||
t.Fatalf("expected edge[%d] to have only 2 points", i)
|
||||
t.Fatalf("expected lifeline edge[%d] to have only 2 points", i)
|
||||
}
|
||||
if edge.Route[0].X != edge.Route[1].X {
|
||||
t.Fatalf("expected edge[%d] to be a vertical line", i)
|
||||
t.Fatalf("expected lifeline edge[%d] to be a vertical line", i)
|
||||
}
|
||||
if edge.Route[0].X != edge.Src.Center().X {
|
||||
t.Fatalf("expected edge[%d] x to be at the actor center", i)
|
||||
t.Fatalf("expected lifeline edge[%d] x to be at the actor center", i)
|
||||
}
|
||||
if edge.Route[0].Y != edge.Src.Height+edge.Src.TopLeft.Y {
|
||||
t.Fatalf("expected edge[%d] to start at the bottom of the source actor", i)
|
||||
t.Fatalf("expected lifeline edge[%d] to start at the bottom of the source actor", i)
|
||||
}
|
||||
if edge.Route[1].Y < lastSequenceEdge.Route[0].Y {
|
||||
t.Fatalf("expected edge[%d] to end after the last sequence edge", i)
|
||||
t.Fatalf("expected lifeline edge[%d] to end after the last sequence edge", i)
|
||||
}
|
||||
}
|
||||
|
||||
// check label positions
|
||||
if *g.Edges[0].LabelPosition != string(label.OutsideTopCenter) {
|
||||
t.Fatalf("expected edge label to be placed on %s, got %s", string(label.OutsideTopCenter), *g.Edges[0].LabelPosition)
|
||||
}
|
||||
|
||||
if *g.Edges[1].LabelPosition != string(label.OutsideBottomCenter) {
|
||||
t.Fatalf("expected edge label to be placed on %s, got %s", string(label.OutsideBottomCenter), *g.Edges[0].LabelPosition)
|
||||
}
|
||||
}
|
||||
|
||||
func TestSpansSequenceDiagram(t *testing.T) {
|
||||
// ┌─────┐ ┌─────┐
|
||||
// │ a │ │ b │
|
||||
// └──┬──┘ └──┬──┘
|
||||
// ├┐────────────────────►┌┤
|
||||
// t1 ││ ││ t1
|
||||
// ├┘◄────────────────────└┤
|
||||
// ├┐──────────────────────►
|
||||
// t2 ││ │
|
||||
// ├┘◄─────────────────────┤
|
||||
g := d2graph.NewGraph(nil)
|
||||
a := g.Root.EnsureChild([]string{"a"})
|
||||
a.Box = geo.NewBox(nil, 100, 100)
|
||||
a.Attributes = d2graph.Attributes{
|
||||
Shape: d2graph.Scalar{Value: shape.PERSON_TYPE},
|
||||
}
|
||||
a_t1 := a.EnsureChild([]string{"t1"})
|
||||
a_t1.Attributes = d2graph.Attributes{
|
||||
Shape: d2graph.Scalar{Value: shape.DIAMOND_TYPE},
|
||||
Label: d2graph.Scalar{Value: "label"},
|
||||
}
|
||||
a_t2 := a.EnsureChild([]string{"t2"})
|
||||
b := g.Root.EnsureChild([]string{"b"})
|
||||
b.Box = geo.NewBox(nil, 30, 30)
|
||||
b_t1 := b.EnsureChild([]string{"t1"})
|
||||
|
||||
g.Edges = []*d2graph.Edge{
|
||||
{
|
||||
Src: a_t1,
|
||||
Dst: b_t1,
|
||||
}, {
|
||||
Src: b_t1,
|
||||
Dst: a_t1,
|
||||
}, {
|
||||
Src: a_t2,
|
||||
Dst: b,
|
||||
}, {
|
||||
Src: b,
|
||||
Dst: a_t2,
|
||||
},
|
||||
}
|
||||
|
||||
ctx := log.WithTB(context.Background(), t, nil)
|
||||
Layout(ctx, g)
|
||||
|
||||
// check properties
|
||||
if a.Attributes.Shape.Value != shape.PERSON_TYPE {
|
||||
t.Fatal("actor a shape changed")
|
||||
}
|
||||
|
||||
if a_t1.Attributes.Label.Value != "" {
|
||||
t.Fatalf("expected no label for span, got %s", a_t1.Attributes.Label.Value)
|
||||
}
|
||||
|
||||
if a_t1.Attributes.Shape.Value != shape.SQUARE_TYPE {
|
||||
t.Fatalf("expected square shape for span, got %s", a_t1.Attributes.Shape.Value)
|
||||
}
|
||||
|
||||
if a_t1.Height != b_t1.Height {
|
||||
t.Fatalf("expected a.t1 and b.t1 to have the same height, got %.5f and %.5f", a_t1.Height, b_t1.Height)
|
||||
}
|
||||
|
||||
// Y diff of the 2 first edges
|
||||
expectedHeight := g.Edges[1].Route[0].Y - g.Edges[0].Route[0].Y + (2 * SPAN_EDGE_PAD)
|
||||
if a_t1.Height != expectedHeight {
|
||||
t.Fatalf("expected a.t1 height to be %.5f, got %.5f", expectedHeight, a_t1.Height)
|
||||
}
|
||||
|
||||
if a_t1.Width != SPAN_WIDTH {
|
||||
t.Fatalf("expected span width to be %.5f, got %.5f", SPAN_WIDTH, a_t1.Width)
|
||||
}
|
||||
|
||||
// check positions
|
||||
if a.Center().X != a_t1.Center().X {
|
||||
t.Fatal("expected a_t1.X = a.X")
|
||||
}
|
||||
if a.Center().X != a_t2.Center().X {
|
||||
t.Fatal("expected a_t2.X = a.X")
|
||||
}
|
||||
if b.Center().X != b_t1.Center().X {
|
||||
t.Fatal("expected b_t1.X = b.X")
|
||||
}
|
||||
if a_t1.TopLeft.Y != b_t1.TopLeft.Y {
|
||||
t.Fatal("expected a.t1 and b.t1 to be placed at the same Y")
|
||||
}
|
||||
if a_t1.TopLeft.Y != g.Edges[0].Route[0].Y-SPAN_EDGE_PAD {
|
||||
t.Fatal("expected a.t1 to be placed at the same Y of the first edge")
|
||||
}
|
||||
|
||||
// check routes
|
||||
if g.Edges[0].Route[0].X != a_t1.TopLeft.X+a_t1.Width+SPAN_EDGE_PAD {
|
||||
t.Fatal("expected the first edge to start on a.t1 top right X")
|
||||
}
|
||||
|
||||
if g.Edges[0].Route[1].X != b_t1.TopLeft.X-SPAN_EDGE_PAD {
|
||||
t.Fatal("expected the first edge to end on b.t1 top left X")
|
||||
}
|
||||
|
||||
if g.Edges[2].Route[1].X != b.Center().X-SPAN_EDGE_PAD {
|
||||
t.Fatal("expected the third edge to end on b.t1 center X")
|
||||
}
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in a new issue