This commit is contained in:
Mayank Mohapatra 2025-02-22 16:34:58 +00:00
parent 04eb007225
commit 9731ae66b5

View file

@ -33,13 +33,12 @@ func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) e
positionObjects(objects, radius)
for _, edge := range g.Edges {
createCircularArc(edge, radius)
createCircularArc(edge)
}
return nil
}
// calculateRadius determines the radius of the circular layout based on the number and size of objects.
func calculateRadius(objects []*d2graph.Object) float64 {
numObjects := float64(len(objects))
maxSize := 0.0
@ -51,10 +50,9 @@ func calculateRadius(objects []*d2graph.Object) float64 {
return math.Max(minRadius, MIN_RADIUS)
}
// positionObjects arranges objects in a circular pattern around the origin.
func positionObjects(objects []*d2graph.Object, radius float64) {
numObjects := float64(len(objects))
angleOffset := -math.Pi / 2 // Start at the top of the circle
angleOffset := -math.Pi / 2
for i, obj := range objects {
angle := angleOffset + (2*math.Pi*float64(i)/numObjects)
@ -67,8 +65,7 @@ func positionObjects(objects []*d2graph.Object, radius float64) {
}
}
// createCircularArc generates a curved edge route with corrected arrow orientation.
func createCircularArc(edge *d2graph.Edge, radius float64) {
func createCircularArc(edge *d2graph.Edge) {
if edge.Src == nil || edge.Dst == nil {
return
}
@ -76,26 +73,32 @@ func createCircularArc(edge *d2graph.Edge, radius float64) {
srcCenter := edge.Src.Center()
dstCenter := edge.Dst.Center()
// Generate initial arc path from source center to destination center
path := generateArcPoints(srcCenter, dstCenter, radius, ARC_STEPS)
srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
if dstAngle < srcAngle {
dstAngle += 2 * math.Pi
}
// Clamp endpoints to the boundaries of the source and destination boxes
arcRadius := math.Hypot(srcCenter.X, srcCenter.Y)
path := make([]*geo.Point, 0, ARC_STEPS+1)
for i := 0; i <= ARC_STEPS; i++ {
t := float64(i) / float64(ARC_STEPS)
angle := srcAngle + t*(dstAngle-srcAngle)
x := arcRadius * math.Cos(angle)
y := arcRadius * math.Sin(angle)
path = append(path, geo.NewPoint(x, y))
}
path[0] = srcCenter
path[len(path)-1] = dstCenter
// Clamp endpoints to the boundaries of the source and destination boxes.
_, newSrc := clampPointOutsideBox(edge.Src.Box, path, 0)
_, newDst := clampPointOutsideBoxReverse(edge.Dst.Box, path, len(path)-1)
path[0] = newSrc
path[len(path)-1] = newDst
// Add a point before newDst along the tangent direction to correct arrow orientation
if len(path) >= 2 {
dstAngle := math.Atan2(newDst.Y, newDst.X)
tangent := geo.NewPoint(-math.Sin(dstAngle), math.Cos(dstAngle))
ε := 0.01 * radius // Small offset, e.g., 1% of radius
preDst := geo.NewPoint(newDst.X+ε*tangent.X, newDst.Y+ε*tangent.Y)
// Insert preDst before newDst
path = append(path[:len(path)-1], preDst, newDst)
}
// Trim redundant path points that fall inside node boundaries
// Trim redundant path points that fall inside node boundaries.
path = trimPathPoints(path, edge.Src.Box)
path = trimPathPoints(path, edge.Dst.Box)
@ -103,34 +106,9 @@ func createCircularArc(edge *d2graph.Edge, radius float64) {
edge.IsCurve = true
}
// generateArcPoints creates points along a circular arc from src to dst.
func generateArcPoints(src, dst *geo.Point, radius float64, steps int) []*geo.Point {
// Calculate angles relative to the center (0,0)
srcAngle := math.Atan2(src.Y, src.X)
dstAngle := math.Atan2(dst.Y, dst.X)
// Ensure the arc goes the shorter way
if dstAngle < srcAngle {
dstAngle += 2 * math.Pi
}
angleDiff := dstAngle - srcAngle
if angleDiff > math.Pi {
dstAngle -= 2 * math.Pi
}
// Generate points along the arc
path := make([]*geo.Point, 0, steps+1)
for i := 0; i <= steps; i++ {
t := float64(i) / float64(steps)
angle := srcAngle + t*(dstAngle-srcAngle)
x := radius * math.Cos(angle)
y := radius * math.Sin(angle)
path = append(path, geo.NewPoint(x, y))
}
return path
}
// clampPointOutsideBox finds the first point outside the box and computes the precise intersection.
// clampPointOutsideBox walks forward along the path until it finds a point outside the box,
// then replaces the point with a precise intersection.
func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *geo.Point) {
if startIdx >= len(path)-1 {
return startIdx, path[startIdx]
@ -153,7 +131,7 @@ func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *
return len(path)-1, path[len(path)-1]
}
// clampPointOutsideBoxReverse works similarly but traverses the path in reverse.
// clampPointOutsideBoxReverse works similarly but in reverse order.
func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (int, *geo.Point) {
if endIdx <= 0 {
return endIdx, path[endIdx]
@ -176,7 +154,8 @@ func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (i
return 0, path[0]
}
// findPreciseIntersection calculates the closest intersection between a segment and box boundaries.
// findPreciseIntersection calculates intersection points between seg and all four sides of the box,
// then returns the intersection closest to seg.Start.
func findPreciseIntersection(box *geo.Box, seg geo.Segment) *geo.Point {
intersections := []struct {
point *geo.Point
@ -191,9 +170,9 @@ func findPreciseIntersection(box *geo.Box, seg geo.Segment) *geo.Point {
dx := seg.End.X - seg.Start.X
dy := seg.End.Y - seg.Start.Y
// Check vertical boundaries
// Check vertical boundaries.
if dx != 0 {
// Left boundary
// Left boundary.
t := (left - seg.Start.X) / dx
if t >= 0 && t <= 1 {
y := seg.Start.Y + t*dy
@ -204,7 +183,7 @@ func findPreciseIntersection(box *geo.Box, seg geo.Segment) *geo.Point {
}{geo.NewPoint(left, y), t})
}
}
// Right boundary
// Right boundary.
t = (right - seg.Start.X) / dx
if t >= 0 && t <= 1 {
y := seg.Start.Y + t*dy
@ -217,9 +196,9 @@ func findPreciseIntersection(box *geo.Box, seg geo.Segment) *geo.Point {
}
}
// Check horizontal boundaries
// Check horizontal boundaries.
if dy != 0 {
// Top boundary
// Top boundary.
t := (top - seg.Start.Y) / dy
if t >= 0 && t <= 1 {
x := seg.Start.X + t*dx
@ -230,7 +209,7 @@ func findPreciseIntersection(box *geo.Box, seg geo.Segment) *geo.Point {
}{geo.NewPoint(x, top), t})
}
}
// Bottom boundary
// Bottom boundary.
t = (bottom - seg.Start.Y) / dy
if t >= 0 && t <= 1 {
x := seg.Start.X + t*dx
@ -247,14 +226,14 @@ func findPreciseIntersection(box *geo.Box, seg geo.Segment) *geo.Point {
return nil
}
// Sort intersections by t (distance from seg.Start) and return the closest
// Sort intersections by t (distance from seg.Start) and return the closest.
sort.Slice(intersections, func(i, j int) bool {
return intersections[i].t < intersections[j].t
})
return intersections[0].point
}
// trimPathPoints removes intermediate points inside the box while retaining endpoints.
// trimPathPoints removes intermediate points that fall inside the given box while preserving endpoints.
func trimPathPoints(path []*geo.Point, box *geo.Box) []*geo.Point {
if len(path) <= 2 {
return path
@ -269,7 +248,7 @@ func trimPathPoints(path []*geo.Point, box *geo.Box) []*geo.Point {
return trimmed
}
// boxContains checks if a point is strictly inside the box (boundary points are outside).
// boxContains uses strict inequalities so that points exactly on the boundary are considered outside.
func boxContains(b *geo.Box, p *geo.Point) bool {
return p.X > b.TopLeft.X &&
p.X < b.TopLeft.X+b.Width &&
@ -277,7 +256,6 @@ func boxContains(b *geo.Box, p *geo.Point) bool {
p.Y < b.TopLeft.Y+b.Height
}
// positionLabelsIcons sets default positions for labels and icons on objects.
func positionLabelsIcons(obj *d2graph.Object) {
if obj.Icon != nil && obj.IconPosition == nil {
if len(obj.ChildrenArray) > 0 {