This commit is contained in:
Alexander Wang 2025-02-28 15:40:00 +01:00 committed by GitHub
commit d088ee5d34
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
13 changed files with 3550 additions and 21 deletions

7
d2graph/cyclediagram.go Normal file
View file

@ -0,0 +1,7 @@
package d2graph
import "oss.terrastruct.com/d2/d2target"
func (obj *Object) IsCycleDiagram() bool {
return obj != nil && obj.Shape.Value == d2target.ShapeCycleDiagram
}

241
d2layouts/d2cycle/layout.go Normal file
View file

@ -0,0 +1,241 @@
package d2cycle
import (
"context"
"math"
"oss.terrastruct.com/d2/d2graph"
"oss.terrastruct.com/d2/lib/geo"
"oss.terrastruct.com/d2/lib/label"
"oss.terrastruct.com/util-go/go2"
)
const (
MIN_RADIUS = 200
PADDING = 20
MIN_SEGMENT_LEN = 10
ARC_STEPS = 30 // high resolution for smooth arcs
)
// Layout arranges nodes in a circle, ensures label/icon positions are set,
// then routes edges with arcs that get clipped at node borders.
func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
objects := g.Root.ChildrenArray
if len(objects) == 0 {
return nil
}
// Make sure every object that has label/icon also has a default position
for _, obj := range g.Objects {
positionLabelsIcons(obj)
}
// Arrange objects in a circle
radius := calculateRadius(objects)
positionObjects(objects, radius)
// Create arcs
for _, edge := range g.Edges {
createCircularArc(edge)
}
return nil
}
func calculateRadius(objects []*d2graph.Object) float64 {
numObjects := float64(len(objects))
maxSize := 0.0
for _, obj := range objects {
size := math.Max(obj.Box.Width, obj.Box.Height)
maxSize = math.Max(maxSize, size)
}
// ensure enough radius to fit all objects
minRadius := (maxSize/2.0 + PADDING) / math.Sin(math.Pi/numObjects)
return math.Max(minRadius, MIN_RADIUS)
}
func positionObjects(objects []*d2graph.Object, radius float64) {
numObjects := float64(len(objects))
// Offset so i=0 is top-center
angleOffset := -math.Pi / 2
for i, obj := range objects {
angle := angleOffset + (2 * math.Pi * float64(i) / numObjects)
x := radius * math.Cos(angle)
y := radius * math.Sin(angle)
// center the box at (x, y)
obj.TopLeft = geo.NewPoint(
x-obj.Box.Width/2,
y-obj.Box.Height/2,
)
}
}
// createCircularArc samples a smooth arc from center to center, then
// forces the endpoints onto each shape's border, and finally calls
// TraceToShape to clip any additional overrun.
func createCircularArc(edge *d2graph.Edge) {
if edge.Src == nil || edge.Dst == nil {
return
}
srcCenter := edge.Src.Center()
dstCenter := edge.Dst.Center()
// angles from origin
srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
if dstAngle < srcAngle {
dstAngle += 2 * math.Pi
}
arcRadius := math.Hypot(srcCenter.X, srcCenter.Y)
// Sample points along the arc
path := make([]*geo.Point, 0, ARC_STEPS+1)
for i := 0; i <= ARC_STEPS; i++ {
t := float64(i) / float64(ARC_STEPS)
angle := srcAngle + t*(dstAngle-srcAngle)
x := arcRadius * math.Cos(angle)
y := arcRadius * math.Sin(angle)
path = append(path, geo.NewPoint(x, y))
}
// Set start/end to exact centers
path[0] = srcCenter
path[len(path)-1] = dstCenter
// Use TraceToShape to clip route to node borders
edge.Route = path
startIndex, endIndex := edge.TraceToShape(edge.Route, 0, len(edge.Route)-1)
if startIndex < endIndex {
edge.Route = edge.Route[startIndex : endIndex+1]
}
edge.IsCurve = true
}
// clampPointOutsideBox walks forward from 'startIdx' until the path segment
// leaves the bounding box. Then it sets path[startIdx] to the intersection.
// If we never find it, we return (startIdx, path[startIdx]) meaning we can't clamp.
func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *geo.Point) {
if startIdx >= len(path)-1 {
return startIdx, path[startIdx]
}
// If path[startIdx] is outside, no clamp needed
if !boxContains(box, path[startIdx]) {
return startIdx, path[startIdx]
}
// Walk forward looking for outside
for i := startIdx + 1; i < len(path); i++ {
insideNext := boxContains(box, path[i])
if insideNext {
// still inside -> keep going
continue
}
// crossing from inside to outside between path[i-1], path[i]
seg := geo.NewSegment(path[i-1], path[i])
inters := boxIntersections(box, *seg)
if len(inters) > 0 {
// use first intersection
return i, inters[0]
}
// fallback => no intersection found
return i, path[i]
}
// entire remainder is inside, so we can't clamp
// Just return the end
last := len(path) - 1
return last, path[last]
}
// clampPointOutsideBoxReverse scans backward from endIdx while path[j] is in the box.
// Once we find crossing (outside→inside), we return (j, intersection).
func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (int, *geo.Point) {
if endIdx <= 0 {
return endIdx, path[endIdx]
}
if !boxContains(box, path[endIdx]) {
// already outside
return endIdx, path[endIdx]
}
for j := endIdx - 1; j >= 0; j-- {
if boxContains(box, path[j]) {
continue
}
// crossing from outside -> inside between path[j], path[j+1]
seg := geo.NewSegment(path[j], path[j+1])
inters := boxIntersections(box, *seg)
if len(inters) > 0 {
return j, inters[0]
}
return j, path[j]
}
// entire path inside
return 0, path[0]
}
// Helper if your geo.Box doesnt implement Contains()
func boxContains(b *geo.Box, p *geo.Point) bool {
// typical bounding-box check
return p.X >= b.TopLeft.X &&
p.X <= b.TopLeft.X+b.Width &&
p.Y >= b.TopLeft.Y &&
p.Y <= b.TopLeft.Y+b.Height
}
// Helper if your geo.Box doesnt implement Intersections(geo.Segment) yet
func boxIntersections(b *geo.Box, seg geo.Segment) []*geo.Point {
// We'll assume d2's standard geo.Box has a built-in Intersections(*Segment) method.
// If not, implement manually. For example, checking each of the 4 edges:
// left, right, top, bottom
// For simplicity, if you do have b.Intersections(...) you can just do:
// return b.Intersections(seg)
return b.Intersections(seg)
// If you don't have that, you'd code the line-rect intersection yourself.
}
// positionLabelsIcons is basically your logic that sets default label/icon positions if needed
func positionLabelsIcons(obj *d2graph.Object) {
// If there's an icon but no icon position, give it a default
if obj.Icon != nil && obj.IconPosition == nil {
if len(obj.ChildrenArray) > 0 {
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
if obj.LabelPosition == nil {
obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
return
}
} else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
} else {
obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
}
// If there's a label but no label position, give it a default
if obj.HasLabel() && obj.LabelPosition == nil {
if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else if obj.HasOutsideBottomLabel() {
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
} else if obj.Icon != nil {
obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
} else {
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
// If the label is bigger than the shape, fallback to outside positions
if float64(obj.LabelDimensions.Width) > obj.Width ||
float64(obj.LabelDimensions.Height) > obj.Height {
if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else {
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
}
}
}
}

View file

@ -9,6 +9,7 @@ import (
"strings"
"oss.terrastruct.com/d2/d2graph"
"oss.terrastruct.com/d2/d2layouts/d2cycle"
"oss.terrastruct.com/d2/d2layouts/d2grid"
"oss.terrastruct.com/d2/d2layouts/d2near"
"oss.terrastruct.com/d2/d2layouts/d2sequence"
@ -20,12 +21,12 @@ import (
type DiagramType string
// a grid diagram at a constant near is
const (
DefaultGraphType DiagramType = ""
ConstantNearGraph DiagramType = "constant-near"
GridDiagram DiagramType = "grid-diagram"
SequenceDiagram DiagramType = "sequence-diagram"
CycleDiagram DiagramType = "cycle-diagram"
)
type GraphInfo struct {
@ -260,6 +261,12 @@ func LayoutNested(ctx context.Context, g *d2graph.Graph, graphInfo GraphInfo, co
if err != nil {
return err
}
case CycleDiagram:
log.Debug(ctx, "layout sequence", slog.Any("rootlevel", g.RootLevel), slog.Any("shapes", g.PrintString()))
err = d2cycle.Layout(ctx, g, coreLayout)
if err != nil {
return err
}
default:
log.Debug(ctx, "default layout", slog.Any("rootlevel", g.RootLevel), slog.Any("shapes", g.PrintString()))
err := coreLayout(ctx, g)
@ -360,6 +367,8 @@ func NestedGraphInfo(obj *d2graph.Object) (gi GraphInfo) {
gi.DiagramType = SequenceDiagram
} else if obj.IsGridDiagram() {
gi.DiagramType = GridDiagram
} else if obj.IsCycleDiagram() {
gi.DiagramType = CycleDiagram
}
return gi
}

View file

@ -452,37 +452,78 @@ func getArrowheadAdjustments(connection d2target.Connection, idToShape map[strin
func pathData(connection d2target.Connection, srcAdj, dstAdj *geo.Point) string {
var path []string
route := connection.Route
if len(route) == 0 {
return ""
}
// Move command to start
path = append(path, fmt.Sprintf("M %f %f",
route[0].X+srcAdj.X,
route[0].Y+srcAdj.Y,
))
if connection.IsCurve {
// If we don't have enough points to do triple-step, handle small fallback
if len(route) < 3 {
// If only 1 or 2 points in route, just draw lines
for _, p := range route[1:] {
path = append(path, fmt.Sprintf("L %f %f",
p.X+dstAdj.X, p.Y+dstAdj.Y,
))
}
return strings.Join(path, " ")
}
i := 1
for ; i < len(route)-3; i += 3 {
// Process triple curves in steps of 3
for ; i+2 < len(route)-1; i += 3 {
path = append(path, fmt.Sprintf("C %f %f %f %f %f %f",
route[i].X, route[i].Y,
route[i+1].X, route[i+1].Y,
route[i+2].X, route[i+2].Y,
))
}
// final curve target adjustment
// Now handle the “final” curve to last point
// Make sure i+2 is still within range
if i+2 < len(route) {
// last triple
path = append(path, fmt.Sprintf("C %f %f %f %f %f %f",
route[i].X, route[i].Y,
route[i+1].X, route[i+1].Y,
route[i+2].X+dstAdj.X,
route[i+2].X+dstAdj.X, // final point plus dst adjustment
route[i+2].Y+dstAdj.Y,
))
} else if i+1 < len(route) {
// We have i+1 but not i+2 => do a simpler final curve or line
path = append(path, fmt.Sprintf("C %f %f %f %f %f %f",
route[i].X, route[i].Y,
route[i].X, route[i].Y, // repeated for control
route[i+1].X+dstAdj.X,
route[i+1].Y+dstAdj.Y,
))
} else {
// We have no final triple => do nothing or fallback line
}
} else {
// Not a curve => the "rounded corner" logic
for i := 1; i < len(route)-1; i++ {
prevSource := route[i-1]
prevTarget := route[i]
currTarget := route[i+1]
// Make sure i+1 is valid
if i+1 >= len(route) {
break
}
prevVector := prevSource.VectorTo(prevTarget)
currVector := prevTarget.VectorTo(currTarget)
dist := geo.EuclideanDistance(prevTarget.X, prevTarget.Y, currTarget.X, currTarget.Y)
dist := geo.EuclideanDistance(
prevTarget.X, prevTarget.Y,
currTarget.X, currTarget.Y,
)
connectionBorderRadius := connection.BorderRadius
units := math.Min(connectionBorderRadius, dist/2)
@ -490,20 +531,26 @@ func pathData(connection d2target.Connection, srcAdj, dstAdj *geo.Point) string
prevTranslations := prevVector.Unit().Multiply(units).ToPoint()
currTranslations := currVector.Unit().Multiply(units).ToPoint()
// Move to corner with "L"
path = append(path, fmt.Sprintf("L %f %f",
prevTarget.X-prevTranslations.X,
prevTarget.Y-prevTranslations.Y,
))
// If the segment length is too small, instead of drawing 2 arcs, just skip this segment and bezier curve to the next one
if units < connectionBorderRadius && i < len(route)-2 {
// Next checks i+2 => ensure its in range
if i+2 >= len(route) {
// can't do nextTarget => break or do fallback
continue
}
nextTarget := route[i+2]
nextVector := geo.NewVector(nextTarget.X-currTarget.X, nextTarget.Y-currTarget.Y)
i++
nextVector := geo.NewVector(
nextTarget.X-currTarget.X,
nextTarget.Y-currTarget.Y,
)
i++ // skip next point
nextTranslations := nextVector.Unit().Multiply(units).ToPoint()
// These 2 bezier control points aren't just at the corner -- they are reflected at the corner, which causes the curve to be ~tangent to the corner,
// which matches how the two arcs look
path = append(path, fmt.Sprintf("C %f %f %f %f %f %f",
// Control point
prevTarget.X+prevTranslations.X,
@ -511,7 +558,7 @@ func pathData(connection d2target.Connection, srcAdj, dstAdj *geo.Point) string
// Control point
currTarget.X-nextTranslations.X,
currTarget.Y-nextTranslations.Y,
// Where curve ends
// End
currTarget.X+nextTranslations.X,
currTarget.Y+nextTranslations.Y,
))
@ -525,12 +572,15 @@ func pathData(connection d2target.Connection, srcAdj, dstAdj *geo.Point) string
}
}
// Finally, draw a line to the last route point + dst offset
if len(route) > 1 {
lastPoint := route[len(route)-1]
path = append(path, fmt.Sprintf("L %f %f",
lastPoint.X+dstAdj.X,
lastPoint.Y+dstAdj.Y,
))
}
}
return strings.Join(path, " ")
}

View file

@ -944,6 +944,7 @@ const (
ShapeSQLTable = "sql_table"
ShapeImage = "image"
ShapeSequenceDiagram = "sequence_diagram"
ShapeCycleDiagram = "cycle"
ShapeHierarchy = "hierarchy"
)
@ -971,6 +972,7 @@ var Shapes = []string{
ShapeSQLTable,
ShapeImage,
ShapeSequenceDiagram,
ShapeCycleDiagram,
ShapeHierarchy,
}
@ -1039,6 +1041,7 @@ var DSL_SHAPE_TO_SHAPE_TYPE = map[string]string{
ShapeSQLTable: shape.TABLE_TYPE,
ShapeImage: shape.IMAGE_TYPE,
ShapeSequenceDiagram: shape.SQUARE_TYPE,
ShapeCycleDiagram: shape.SQUARE_TYPE,
ShapeHierarchy: shape.SQUARE_TYPE,
}

File diff suppressed because it is too large Load diff

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 18 KiB

1495
e2etests/testdata/txtar/cycle-diagram/elk/board.exp.json generated vendored Normal file

File diff suppressed because it is too large Load diff

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 18 KiB

View file

@ -775,3 +775,17 @@ a -> b: hello {
b -> c: {
icon: https://icons.terrastruct.com/essentials%2F213-alarm.svg
}
-- cycle-diagram --
1: "" {
shape: cycle
a -> b -> c -> d
}
2: "" {
shape: cycle
a -> b -> c
}
3: "" {
shape: cycle
a -> b
}

View file

@ -324,3 +324,12 @@ func RemovePoints(points Points, toRemove []bool) Points {
}
return without
}
func (v Vector) Normalize() Vector {
length := v.Length()
if length == 0 {
// avoid dividing by 0
return Vector{0, 0}
}
return Vector{v[0] / length, v[1] / length}
}