try
Signed-off-by: Mayank Mohapatra <125661248+Mayank77maruti@users.noreply.github.com>
This commit is contained in:
parent
564c1f8edf
commit
d49b46324d
6 changed files with 9231 additions and 2947 deletions
|
|
@ -2,7 +2,6 @@ package d2cycle
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"context"
|
"context"
|
||||||
"fmt"
|
|
||||||
"math"
|
"math"
|
||||||
"sort"
|
"sort"
|
||||||
|
|
||||||
|
|
@ -13,13 +12,10 @@ import (
|
||||||
)
|
)
|
||||||
|
|
||||||
const (
|
const (
|
||||||
MIN_RADIUS = 250 // Increased to provide more space
|
MIN_RADIUS = 200
|
||||||
PADDING = 40 // Increased padding between objects
|
PADDING = 20
|
||||||
MIN_SEGMENT_LEN = 15 // Increased minimum segment length
|
MIN_SEGMENT_LEN = 10
|
||||||
ARC_STEPS = 100 // Keep the same number of steps for arc calculation
|
ARC_STEPS = 100
|
||||||
LABEL_MARGIN = 10 // Margin for labels
|
|
||||||
EDGE_BEND_FACTOR = 0.3 // Controls how much edges bend inward/outward
|
|
||||||
EDGE_PADDING_FACTOR = 0.15 // Controls spacing between parallel edges
|
|
||||||
)
|
)
|
||||||
|
|
||||||
// Layout lays out the graph and computes curved edge routes
|
// Layout lays out the graph and computes curved edge routes
|
||||||
|
|
@ -29,193 +25,47 @@ func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) e
|
||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
// Pre-compute dimensions for all objects
|
|
||||||
for _, obj := range g.Objects {
|
for _, obj := range g.Objects {
|
||||||
positionLabelsIcons(obj)
|
positionLabelsIcons(obj)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Calculate optimal radius based on number and size of objects
|
radius := calculateRadius(objects)
|
||||||
radius := calculateOptimalRadius(objects)
|
|
||||||
|
|
||||||
// Position objects in a circle
|
|
||||||
positionObjects(objects, radius)
|
positionObjects(objects, radius)
|
||||||
|
|
||||||
// Adjust positions to resolve overlaps
|
for _, edge := range g.Edges {
|
||||||
resolveOverlaps(objects, radius)
|
createCircularArc(edge)
|
||||||
|
}
|
||||||
// Create edge routes for all edges
|
|
||||||
createEdgeRoutes(g.Edges, objects, radius)
|
|
||||||
|
|
||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
// calculateOptimalRadius computes an ideal radius based on number and size of objects
|
func calculateRadius(objects []*d2graph.Object) float64 {
|
||||||
func calculateOptimalRadius(objects []*d2graph.Object) float64 {
|
|
||||||
numObjects := float64(len(objects))
|
numObjects := float64(len(objects))
|
||||||
|
|
||||||
// Find largest object dimension
|
|
||||||
maxSize := 0.0
|
maxSize := 0.0
|
||||||
totalArea := 0.0
|
|
||||||
for _, obj := range objects {
|
for _, obj := range objects {
|
||||||
size := math.Max(obj.Box.Width, obj.Box.Height)
|
size := math.Max(obj.Box.Width, obj.Box.Height)
|
||||||
maxSize = math.Max(maxSize, size)
|
maxSize = math.Max(maxSize, size)
|
||||||
totalArea += obj.Box.Width * obj.Box.Height
|
|
||||||
}
|
}
|
||||||
|
minRadius := (maxSize/2.0 + PADDING) / math.Sin(math.Pi/numObjects)
|
||||||
// Minimum radius based on largest object
|
return math.Max(minRadius, MIN_RADIUS)
|
||||||
minRadiusBySize := (maxSize/2.0 + PADDING) / math.Sin(math.Pi/numObjects)
|
|
||||||
|
|
||||||
// Alternative calculation based on total area
|
|
||||||
areaRadius := math.Sqrt(totalArea / (math.Pi * 0.5)) * 1.5
|
|
||||||
|
|
||||||
// Use the larger of the minimum values
|
|
||||||
calculatedRadius := math.Max(minRadiusBySize, areaRadius)
|
|
||||||
|
|
||||||
// Ensure we don't go below minimum radius
|
|
||||||
return math.Max(calculatedRadius, MIN_RADIUS)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// positionObjects arranges objects in a circle with the given radius
|
|
||||||
func positionObjects(objects []*d2graph.Object, radius float64) {
|
func positionObjects(objects []*d2graph.Object, radius float64) {
|
||||||
numObjects := float64(len(objects))
|
numObjects := float64(len(objects))
|
||||||
|
|
||||||
// Start from top (-π/2) with equal spacing
|
|
||||||
angleOffset := -math.Pi / 2
|
angleOffset := -math.Pi / 2
|
||||||
|
|
||||||
// Special case for small number of objects
|
|
||||||
if numObjects <= 3 {
|
|
||||||
// For 2-3 objects, increase spacing
|
|
||||||
angleOffset = -math.Pi / 2
|
|
||||||
radius *= 1.2
|
|
||||||
}
|
|
||||||
|
|
||||||
for i, obj := range objects {
|
for i, obj := range objects {
|
||||||
angle := angleOffset + (2 * math.Pi * float64(i) / numObjects)
|
angle := angleOffset + (2 * math.Pi * float64(i) / numObjects)
|
||||||
x := radius * math.Cos(angle)
|
x := radius * math.Cos(angle)
|
||||||
y := radius * math.Sin(angle)
|
y := radius * math.Sin(angle)
|
||||||
obj.TopLeft = geo.NewPoint(
|
obj.TopLeft = geo.NewPoint(
|
||||||
x - obj.Box.Width/2,
|
x-obj.Box.Width/2,
|
||||||
y - obj.Box.Height/2,
|
y-obj.Box.Height/2,
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// resolveOverlaps detects and fixes overlapping objects
|
func createCircularArc(edge *d2graph.Edge) {
|
||||||
func resolveOverlaps(objects []*d2graph.Object, radius float64) {
|
|
||||||
if len(objects) <= 1 {
|
|
||||||
return
|
|
||||||
}
|
|
||||||
|
|
||||||
// Maximum number of iterations to prevent infinite loops
|
|
||||||
maxIterations := 10
|
|
||||||
iteration := 0
|
|
||||||
|
|
||||||
for iteration < maxIterations {
|
|
||||||
overlapsResolved := true
|
|
||||||
|
|
||||||
// Check each pair of objects for overlap
|
|
||||||
for i := 0; i < len(objects); i++ {
|
|
||||||
for j := i + 1; j < len(objects); j++ {
|
|
||||||
obj1 := objects[i]
|
|
||||||
obj2 := objects[j]
|
|
||||||
|
|
||||||
// Calculate box centers
|
|
||||||
center1 := obj1.Center()
|
|
||||||
center2 := obj2.Center()
|
|
||||||
|
|
||||||
// Calculate minimum separation needed
|
|
||||||
minSepX := (obj1.Box.Width + obj2.Box.Width) / 2 + PADDING
|
|
||||||
minSepY := (obj1.Box.Height + obj2.Box.Height) / 2 + PADDING
|
|
||||||
|
|
||||||
// Calculate actual separation
|
|
||||||
dx := math.Abs(center2.X - center1.X)
|
|
||||||
dy := math.Abs(center2.Y - center1.Y)
|
|
||||||
|
|
||||||
// Check for overlap
|
|
||||||
if dx < minSepX && dy < minSepY {
|
|
||||||
overlapsResolved = false
|
|
||||||
|
|
||||||
// Calculate push direction (from center to objects)
|
|
||||||
angle1 := math.Atan2(center1.Y, center1.X)
|
|
||||||
angle2 := math.Atan2(center2.Y, center2.X)
|
|
||||||
|
|
||||||
// Push objects outward slightly
|
|
||||||
pushFactor := 0.1 * radius
|
|
||||||
|
|
||||||
// Update first object position
|
|
||||||
newX1 := pushFactor * math.Cos(angle1)
|
|
||||||
newY1 := pushFactor * math.Sin(angle1)
|
|
||||||
obj1.TopLeft.X += newX1 - obj1.Box.Width/2
|
|
||||||
obj1.TopLeft.Y += newY1 - obj1.Box.Height/2
|
|
||||||
|
|
||||||
// Update second object position
|
|
||||||
newX2 := pushFactor * math.Cos(angle2)
|
|
||||||
newY2 := pushFactor * math.Sin(angle2)
|
|
||||||
obj2.TopLeft.X += newX2 - obj2.Box.Width/2
|
|
||||||
obj2.TopLeft.Y += newY2 - obj2.Box.Height/2
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// If no overlaps were found, we're done
|
|
||||||
if overlapsResolved {
|
|
||||||
break
|
|
||||||
}
|
|
||||||
|
|
||||||
iteration++
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// createEdgeRoutes creates routes for all edges in the graph
|
|
||||||
func createEdgeRoutes(edges []*d2graph.Edge, objects []*d2graph.Object, radius float64) {
|
|
||||||
// First categorize edges to identify parallel edges
|
|
||||||
edgeGroups := groupParallelEdges(edges)
|
|
||||||
|
|
||||||
// Process each group of edges
|
|
||||||
for _, group := range edgeGroups {
|
|
||||||
if len(group) == 1 {
|
|
||||||
// Single edge
|
|
||||||
createCircularArc(group[0], radius, 0)
|
|
||||||
} else {
|
|
||||||
// Multiple parallel edges
|
|
||||||
for i, edge := range group {
|
|
||||||
// Alternate between inner and outer curves for parallel edges
|
|
||||||
offset := float64(i-(len(group)-1)/2) * EDGE_PADDING_FACTOR
|
|
||||||
createCircularArc(edge, radius, offset)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// groupParallelEdges identifies edges between the same source and destination
|
|
||||||
func groupParallelEdges(edges []*d2graph.Edge) [][]*d2graph.Edge {
|
|
||||||
groups := make(map[string][]*d2graph.Edge)
|
|
||||||
|
|
||||||
for _, edge := range edges {
|
|
||||||
if edge.Src == nil || edge.Dst == nil {
|
|
||||||
continue
|
|
||||||
}
|
|
||||||
|
|
||||||
// Create a key for each source-destination pair using object IDs or addresses
|
|
||||||
// Since GetID() is not available, use pointer addresses as unique identifiers
|
|
||||||
srcID := fmt.Sprintf("%p", edge.Src)
|
|
||||||
dstID := fmt.Sprintf("%p", edge.Dst)
|
|
||||||
key := srcID + "->" + dstID
|
|
||||||
|
|
||||||
groups[key] = append(groups[key], edge)
|
|
||||||
}
|
|
||||||
|
|
||||||
// Convert map to slice of edge groups
|
|
||||||
result := make([][]*d2graph.Edge, 0, len(groups))
|
|
||||||
for _, group := range groups {
|
|
||||||
result = append(result, group)
|
|
||||||
}
|
|
||||||
|
|
||||||
return result
|
|
||||||
}
|
|
||||||
|
|
||||||
// createCircularArc creates a curved path between source and destination objects
|
|
||||||
func createCircularArc(edge *d2graph.Edge, baseRadius float64, offset float64) {
|
|
||||||
if edge.Src == nil || edge.Dst == nil {
|
if edge.Src == nil || edge.Dst == nil {
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
|
|
@ -223,125 +73,70 @@ func createCircularArc(edge *d2graph.Edge, baseRadius float64, offset float64) {
|
||||||
srcCenter := edge.Src.Center()
|
srcCenter := edge.Src.Center()
|
||||||
dstCenter := edge.Dst.Center()
|
dstCenter := edge.Dst.Center()
|
||||||
|
|
||||||
// Calculate angles and radii
|
|
||||||
srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
|
srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
|
||||||
dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
|
dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
|
||||||
|
|
||||||
// Ensure we go the shorter way around the circle
|
|
||||||
if dstAngle < srcAngle {
|
if dstAngle < srcAngle {
|
||||||
if srcAngle - dstAngle > math.Pi {
|
dstAngle += 2 * math.Pi
|
||||||
dstAngle += 2 * math.Pi
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
if dstAngle - srcAngle > math.Pi {
|
|
||||||
srcAngle += 2 * math.Pi
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Adjust radius based on offset for parallel edges
|
arcRadius := math.Hypot(srcCenter.X, srcCenter.Y)
|
||||||
arcRadius := baseRadius * (1.0 + offset)
|
|
||||||
|
|
||||||
// Control points for the path
|
|
||||||
path := make([]*geo.Point, 0, ARC_STEPS+1)
|
path := make([]*geo.Point, 0, ARC_STEPS+1)
|
||||||
|
|
||||||
// Add intermediate points along the arc
|
|
||||||
for i := 0; i <= ARC_STEPS; i++ {
|
for i := 0; i <= ARC_STEPS; i++ {
|
||||||
t := float64(i) / float64(ARC_STEPS)
|
t := float64(i) / float64(ARC_STEPS)
|
||||||
angle := srcAngle + t*(dstAngle-srcAngle)
|
angle := srcAngle + t*(dstAngle-srcAngle)
|
||||||
|
x := arcRadius * math.Cos(angle)
|
||||||
// Apply an inward bend for better curves
|
y := arcRadius * math.Sin(angle)
|
||||||
distanceFactor := 1.0 - EDGE_BEND_FACTOR * math.Sin(t * math.Pi)
|
|
||||||
radius := arcRadius * distanceFactor
|
|
||||||
|
|
||||||
x := radius * math.Cos(angle)
|
|
||||||
y := radius * math.Sin(angle)
|
|
||||||
path = append(path, geo.NewPoint(x, y))
|
path = append(path, geo.NewPoint(x, y))
|
||||||
}
|
}
|
||||||
|
|
||||||
// Ensure endpoints are exactly at source and destination centers
|
|
||||||
path[0] = srcCenter
|
path[0] = srcCenter
|
||||||
path[len(path)-1] = dstCenter
|
path[len(path)-1] = dstCenter
|
||||||
|
|
||||||
// Clamp endpoints to the boundaries of the boxes
|
// Clamp endpoints to the boundaries of the source and destination boxes.
|
||||||
_, newSrc := clampPointOutsideBox(edge.Src.Box, path, 0)
|
_, newSrc := clampPointOutsideBox(edge.Src.Box, path, 0)
|
||||||
_, newDst := clampPointOutsideBoxReverse(edge.Dst.Box, path, len(path)-1)
|
_, newDst := clampPointOutsideBoxReverse(edge.Dst.Box, path, len(path)-1)
|
||||||
path[0] = newSrc
|
path[0] = newSrc
|
||||||
path[len(path)-1] = newDst
|
path[len(path)-1] = newDst
|
||||||
|
|
||||||
// Trim redundant path points
|
// Trim redundant path points that fall inside node boundaries.
|
||||||
path = trimPathPoints(path, edge.Src.Box)
|
path = trimPathPoints(path, edge.Src.Box)
|
||||||
path = trimPathPoints(path, edge.Dst.Box)
|
path = trimPathPoints(path, edge.Dst.Box)
|
||||||
|
|
||||||
// Smoothen the path
|
|
||||||
path = smoothPath(path)
|
|
||||||
|
|
||||||
// Set the final route
|
|
||||||
edge.Route = path
|
edge.Route = path
|
||||||
edge.IsCurve = true
|
edge.IsCurve = true
|
||||||
|
|
||||||
// Add arrow direction point for the end
|
|
||||||
if len(edge.Route) >= 2 {
|
if len(edge.Route) >= 2 {
|
||||||
adjustArrowDirection(edge)
|
lastIndex := len(edge.Route) - 1
|
||||||
}
|
lastPoint := edge.Route[lastIndex]
|
||||||
}
|
secondLastPoint := edge.Route[lastIndex-1]
|
||||||
|
|
||||||
// smoothPath applies path smoothing to reduce sharp angles
|
tangentX := -lastPoint.Y
|
||||||
func smoothPath(path []*geo.Point) []*geo.Point {
|
tangentY := lastPoint.X
|
||||||
if len(path) <= 3 {
|
mag := math.Hypot(tangentX, tangentY)
|
||||||
return path
|
if mag > 0 {
|
||||||
}
|
tangentX /= mag
|
||||||
|
tangentY /= mag
|
||||||
|
}
|
||||||
|
const MIN_SEGMENT_LEN = 4.159
|
||||||
|
|
||||||
result := []*geo.Point{path[0]}
|
dx := lastPoint.X - secondLastPoint.X
|
||||||
|
dy := lastPoint.Y - secondLastPoint.Y
|
||||||
|
segLength := math.Hypot(dx, dy)
|
||||||
|
if segLength > 0 {
|
||||||
|
currentDirX := dx / segLength
|
||||||
|
currentDirY := dy / segLength
|
||||||
|
|
||||||
// Use a simple moving average for interior points
|
// Check if we need to adjust the direction
|
||||||
for i := 1; i < len(path)-1; i++ {
|
if segLength < MIN_SEGMENT_LEN || (currentDirX*tangentX+currentDirY*tangentY) < 0.999 {
|
||||||
prev := path[i-1]
|
// Create new point along tangent direction
|
||||||
curr := path[i]
|
adjustLength := MIN_SEGMENT_LEN // Now float64
|
||||||
next := path[i+1]
|
if segLength >= MIN_SEGMENT_LEN {
|
||||||
|
adjustLength = segLength // Both are float64 now
|
||||||
// Simple weighted average (current point has more weight)
|
}
|
||||||
avgX := (prev.X + 2*curr.X + next.X) / 4
|
newSecondLastX := lastPoint.X - tangentX*adjustLength
|
||||||
avgY := (prev.Y + 2*curr.Y + next.Y) / 4
|
newSecondLastY := lastPoint.Y - tangentY*adjustLength
|
||||||
|
edge.Route[lastIndex-1] = geo.NewPoint(newSecondLastX, newSecondLastY)
|
||||||
result = append(result, geo.NewPoint(avgX, avgY))
|
}
|
||||||
}
|
|
||||||
|
|
||||||
result = append(result, path[len(path)-1])
|
|
||||||
return result
|
|
||||||
}
|
|
||||||
|
|
||||||
// adjustArrowDirection ensures the arrow points in the right direction
|
|
||||||
func adjustArrowDirection(edge *d2graph.Edge) {
|
|
||||||
lastIndex := len(edge.Route) - 1
|
|
||||||
lastPoint := edge.Route[lastIndex]
|
|
||||||
secondLastPoint := edge.Route[lastIndex-1]
|
|
||||||
|
|
||||||
// Calculate tangent vector perpendicular to radius (for smooth entry)
|
|
||||||
tangentX := -lastPoint.Y
|
|
||||||
tangentY := lastPoint.X
|
|
||||||
mag := math.Hypot(tangentX, tangentY)
|
|
||||||
if mag > 0 {
|
|
||||||
tangentX /= mag
|
|
||||||
tangentY /= mag
|
|
||||||
}
|
|
||||||
|
|
||||||
// Check current direction
|
|
||||||
dx := lastPoint.X - secondLastPoint.X
|
|
||||||
dy := lastPoint.Y - secondLastPoint.Y
|
|
||||||
segLength := math.Hypot(dx, dy)
|
|
||||||
|
|
||||||
if segLength > 0 {
|
|
||||||
currentDirX := dx / segLength
|
|
||||||
currentDirY := dy / segLength
|
|
||||||
|
|
||||||
// Adjust only if direction needs correction
|
|
||||||
dotProduct := currentDirX*tangentX + currentDirY*tangentY
|
|
||||||
if segLength < MIN_SEGMENT_LEN || dotProduct < 0.9 {
|
|
||||||
// Create new point for smooth arrow entry
|
|
||||||
adjustLength := math.Max(MIN_SEGMENT_LEN, segLength * 0.8)
|
|
||||||
newSecondLastX := lastPoint.X - tangentX*adjustLength
|
|
||||||
newSecondLastY := lastPoint.Y - tangentY*adjustLength
|
|
||||||
edge.Route[lastIndex-1] = geo.NewPoint(newSecondLastX, newSecondLastY)
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
@ -487,7 +282,7 @@ func trimPathPoints(path []*geo.Point, box *geo.Box) []*geo.Point {
|
||||||
return trimmed
|
return trimmed
|
||||||
}
|
}
|
||||||
|
|
||||||
// boxContains checks if a point is inside a box (strictly inside, not on boundary)
|
// boxContains uses strict inequalities so that points exactly on the boundary are considered outside.
|
||||||
func boxContains(b *geo.Box, p *geo.Point) bool {
|
func boxContains(b *geo.Box, p *geo.Point) bool {
|
||||||
return p.X > b.TopLeft.X &&
|
return p.X > b.TopLeft.X &&
|
||||||
p.X < b.TopLeft.X+b.Width &&
|
p.X < b.TopLeft.X+b.Width &&
|
||||||
|
|
@ -495,47 +290,34 @@ func boxContains(b *geo.Box, p *geo.Point) bool {
|
||||||
p.Y < b.TopLeft.Y+b.Height
|
p.Y < b.TopLeft.Y+b.Height
|
||||||
}
|
}
|
||||||
|
|
||||||
// positionLabelsIcons positions labels and icons with better handling of overlap
|
|
||||||
func positionLabelsIcons(obj *d2graph.Object) {
|
func positionLabelsIcons(obj *d2graph.Object) {
|
||||||
// Handle icon positioning first
|
|
||||||
if obj.Icon != nil && obj.IconPosition == nil {
|
if obj.Icon != nil && obj.IconPosition == nil {
|
||||||
if len(obj.ChildrenArray) > 0 {
|
if len(obj.ChildrenArray) > 0 {
|
||||||
// For container objects, place icon at top left
|
|
||||||
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
|
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
|
||||||
|
|
||||||
// If no label position is set, place label at top right
|
|
||||||
if obj.LabelPosition == nil {
|
if obj.LabelPosition == nil {
|
||||||
obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
|
obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
} else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
|
} else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
|
||||||
// For structured objects, place icon at top left
|
|
||||||
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
|
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
|
||||||
} else {
|
} else {
|
||||||
// For standard objects, center the icon
|
|
||||||
obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
|
obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Now handle label positioning
|
|
||||||
if obj.HasLabel() && obj.LabelPosition == nil {
|
if obj.HasLabel() && obj.LabelPosition == nil {
|
||||||
if len(obj.ChildrenArray) > 0 {
|
if len(obj.ChildrenArray) > 0 {
|
||||||
// For container objects, place label at top center
|
|
||||||
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
|
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
|
||||||
} else if obj.HasOutsideBottomLabel() {
|
} else if obj.HasOutsideBottomLabel() {
|
||||||
// For objects with bottom labels, respect that
|
|
||||||
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
|
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
|
||||||
} else if obj.Icon != nil {
|
} else if obj.Icon != nil {
|
||||||
// If there's an icon, place label at top center
|
|
||||||
obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
|
obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
|
||||||
} else {
|
} else {
|
||||||
// Default positioning in the middle
|
|
||||||
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
|
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
|
||||||
}
|
}
|
||||||
|
|
||||||
// If label is too large for the object, move it outside
|
if float64(obj.LabelDimensions.Width) > obj.Width ||
|
||||||
if float64(obj.LabelDimensions.Width) > obj.Width*0.9 ||
|
float64(obj.LabelDimensions.Height) > obj.Height {
|
||||||
float64(obj.LabelDimensions.Height) > obj.Height*0.9 {
|
|
||||||
if len(obj.ChildrenArray) > 0 {
|
if len(obj.ChildrenArray) > 0 {
|
||||||
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
|
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
|
||||||
} else {
|
} else {
|
||||||
|
|
|
||||||
5738
e2etests/testdata/txtar/cycle-diagram/dagre/board.exp.json
generated
vendored
5738
e2etests/testdata/txtar/cycle-diagram/dagre/board.exp.json
generated
vendored
File diff suppressed because it is too large
Load diff
File diff suppressed because one or more lines are too long
|
Before Width: | Height: | Size: 26 KiB After Width: | Height: | Size: 47 KiB |
5738
e2etests/testdata/txtar/cycle-diagram/elk/board.exp.json
generated
vendored
5738
e2etests/testdata/txtar/cycle-diagram/elk/board.exp.json
generated
vendored
File diff suppressed because it is too large
Load diff
File diff suppressed because one or more lines are too long
|
Before Width: | Height: | Size: 26 KiB After Width: | Height: | Size: 47 KiB |
|
|
@ -789,3 +789,11 @@ b -> c: {
|
||||||
shape: cycle
|
shape: cycle
|
||||||
a -> b
|
a -> b
|
||||||
}
|
}
|
||||||
|
4: "" {
|
||||||
|
shape: cycle
|
||||||
|
a -> b -> c -> d -> e -> f
|
||||||
|
}
|
||||||
|
5: "" {
|
||||||
|
shape: cycle
|
||||||
|
a -> b -> c -> d -> e
|
||||||
|
}
|
||||||
Loading…
Reference in a new issue