Signed-off-by: Mayank Mohapatra <125661248+Mayank77maruti@users.noreply.github.com>
This commit is contained in:
Mayank Mohapatra 2025-02-26 04:17:44 +00:00
parent 564c1f8edf
commit d49b46324d
6 changed files with 9231 additions and 2947 deletions

View file

@ -2,7 +2,6 @@ package d2cycle
import (
"context"
"fmt"
"math"
"sort"
@ -13,13 +12,10 @@ import (
)
const (
MIN_RADIUS = 250 // Increased to provide more space
PADDING = 40 // Increased padding between objects
MIN_SEGMENT_LEN = 15 // Increased minimum segment length
ARC_STEPS = 100 // Keep the same number of steps for arc calculation
LABEL_MARGIN = 10 // Margin for labels
EDGE_BEND_FACTOR = 0.3 // Controls how much edges bend inward/outward
EDGE_PADDING_FACTOR = 0.15 // Controls spacing between parallel edges
MIN_RADIUS = 200
PADDING = 20
MIN_SEGMENT_LEN = 10
ARC_STEPS = 100
)
// Layout lays out the graph and computes curved edge routes
@ -29,66 +25,35 @@ func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) e
return nil
}
// Pre-compute dimensions for all objects
for _, obj := range g.Objects {
positionLabelsIcons(obj)
}
// Calculate optimal radius based on number and size of objects
radius := calculateOptimalRadius(objects)
// Position objects in a circle
radius := calculateRadius(objects)
positionObjects(objects, radius)
// Adjust positions to resolve overlaps
resolveOverlaps(objects, radius)
// Create edge routes for all edges
createEdgeRoutes(g.Edges, objects, radius)
for _, edge := range g.Edges {
createCircularArc(edge)
}
return nil
}
// calculateOptimalRadius computes an ideal radius based on number and size of objects
func calculateOptimalRadius(objects []*d2graph.Object) float64 {
func calculateRadius(objects []*d2graph.Object) float64 {
numObjects := float64(len(objects))
// Find largest object dimension
maxSize := 0.0
totalArea := 0.0
for _, obj := range objects {
size := math.Max(obj.Box.Width, obj.Box.Height)
maxSize = math.Max(maxSize, size)
totalArea += obj.Box.Width * obj.Box.Height
}
minRadius := (maxSize/2.0 + PADDING) / math.Sin(math.Pi/numObjects)
return math.Max(minRadius, MIN_RADIUS)
}
// Minimum radius based on largest object
minRadiusBySize := (maxSize/2.0 + PADDING) / math.Sin(math.Pi/numObjects)
// Alternative calculation based on total area
areaRadius := math.Sqrt(totalArea / (math.Pi * 0.5)) * 1.5
// Use the larger of the minimum values
calculatedRadius := math.Max(minRadiusBySize, areaRadius)
// Ensure we don't go below minimum radius
return math.Max(calculatedRadius, MIN_RADIUS)
}
// positionObjects arranges objects in a circle with the given radius
func positionObjects(objects []*d2graph.Object, radius float64) {
numObjects := float64(len(objects))
// Start from top (-π/2) with equal spacing
angleOffset := -math.Pi / 2
// Special case for small number of objects
if numObjects <= 3 {
// For 2-3 objects, increase spacing
angleOffset = -math.Pi / 2
radius *= 1.2
}
for i, obj := range objects {
angle := angleOffset + (2 * math.Pi * float64(i) / numObjects)
x := radius * math.Cos(angle)
@ -100,122 +65,7 @@ func positionObjects(objects []*d2graph.Object, radius float64) {
}
}
// resolveOverlaps detects and fixes overlapping objects
func resolveOverlaps(objects []*d2graph.Object, radius float64) {
if len(objects) <= 1 {
return
}
// Maximum number of iterations to prevent infinite loops
maxIterations := 10
iteration := 0
for iteration < maxIterations {
overlapsResolved := true
// Check each pair of objects for overlap
for i := 0; i < len(objects); i++ {
for j := i + 1; j < len(objects); j++ {
obj1 := objects[i]
obj2 := objects[j]
// Calculate box centers
center1 := obj1.Center()
center2 := obj2.Center()
// Calculate minimum separation needed
minSepX := (obj1.Box.Width + obj2.Box.Width) / 2 + PADDING
minSepY := (obj1.Box.Height + obj2.Box.Height) / 2 + PADDING
// Calculate actual separation
dx := math.Abs(center2.X - center1.X)
dy := math.Abs(center2.Y - center1.Y)
// Check for overlap
if dx < minSepX && dy < minSepY {
overlapsResolved = false
// Calculate push direction (from center to objects)
angle1 := math.Atan2(center1.Y, center1.X)
angle2 := math.Atan2(center2.Y, center2.X)
// Push objects outward slightly
pushFactor := 0.1 * radius
// Update first object position
newX1 := pushFactor * math.Cos(angle1)
newY1 := pushFactor * math.Sin(angle1)
obj1.TopLeft.X += newX1 - obj1.Box.Width/2
obj1.TopLeft.Y += newY1 - obj1.Box.Height/2
// Update second object position
newX2 := pushFactor * math.Cos(angle2)
newY2 := pushFactor * math.Sin(angle2)
obj2.TopLeft.X += newX2 - obj2.Box.Width/2
obj2.TopLeft.Y += newY2 - obj2.Box.Height/2
}
}
}
// If no overlaps were found, we're done
if overlapsResolved {
break
}
iteration++
}
}
// createEdgeRoutes creates routes for all edges in the graph
func createEdgeRoutes(edges []*d2graph.Edge, objects []*d2graph.Object, radius float64) {
// First categorize edges to identify parallel edges
edgeGroups := groupParallelEdges(edges)
// Process each group of edges
for _, group := range edgeGroups {
if len(group) == 1 {
// Single edge
createCircularArc(group[0], radius, 0)
} else {
// Multiple parallel edges
for i, edge := range group {
// Alternate between inner and outer curves for parallel edges
offset := float64(i-(len(group)-1)/2) * EDGE_PADDING_FACTOR
createCircularArc(edge, radius, offset)
}
}
}
}
// groupParallelEdges identifies edges between the same source and destination
func groupParallelEdges(edges []*d2graph.Edge) [][]*d2graph.Edge {
groups := make(map[string][]*d2graph.Edge)
for _, edge := range edges {
if edge.Src == nil || edge.Dst == nil {
continue
}
// Create a key for each source-destination pair using object IDs or addresses
// Since GetID() is not available, use pointer addresses as unique identifiers
srcID := fmt.Sprintf("%p", edge.Src)
dstID := fmt.Sprintf("%p", edge.Dst)
key := srcID + "->" + dstID
groups[key] = append(groups[key], edge)
}
// Convert map to slice of edge groups
result := make([][]*d2graph.Edge, 0, len(groups))
for _, group := range groups {
result = append(result, group)
}
return result
}
// createCircularArc creates a curved path between source and destination objects
func createCircularArc(edge *d2graph.Edge, baseRadius float64, offset float64) {
func createCircularArc(edge *d2graph.Edge) {
if edge.Src == nil || edge.Dst == nil {
return
}
@ -223,100 +73,43 @@ func createCircularArc(edge *d2graph.Edge, baseRadius float64, offset float64) {
srcCenter := edge.Src.Center()
dstCenter := edge.Dst.Center()
// Calculate angles and radii
srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
// Ensure we go the shorter way around the circle
if dstAngle < srcAngle {
if srcAngle - dstAngle > math.Pi {
dstAngle += 2 * math.Pi
}
} else {
if dstAngle - srcAngle > math.Pi {
srcAngle += 2 * math.Pi
}
}
// Adjust radius based on offset for parallel edges
arcRadius := baseRadius * (1.0 + offset)
arcRadius := math.Hypot(srcCenter.X, srcCenter.Y)
// Control points for the path
path := make([]*geo.Point, 0, ARC_STEPS+1)
// Add intermediate points along the arc
for i := 0; i <= ARC_STEPS; i++ {
t := float64(i) / float64(ARC_STEPS)
angle := srcAngle + t*(dstAngle-srcAngle)
// Apply an inward bend for better curves
distanceFactor := 1.0 - EDGE_BEND_FACTOR * math.Sin(t * math.Pi)
radius := arcRadius * distanceFactor
x := radius * math.Cos(angle)
y := radius * math.Sin(angle)
x := arcRadius * math.Cos(angle)
y := arcRadius * math.Sin(angle)
path = append(path, geo.NewPoint(x, y))
}
// Ensure endpoints are exactly at source and destination centers
path[0] = srcCenter
path[len(path)-1] = dstCenter
// Clamp endpoints to the boundaries of the boxes
// Clamp endpoints to the boundaries of the source and destination boxes.
_, newSrc := clampPointOutsideBox(edge.Src.Box, path, 0)
_, newDst := clampPointOutsideBoxReverse(edge.Dst.Box, path, len(path)-1)
path[0] = newSrc
path[len(path)-1] = newDst
// Trim redundant path points
// Trim redundant path points that fall inside node boundaries.
path = trimPathPoints(path, edge.Src.Box)
path = trimPathPoints(path, edge.Dst.Box)
// Smoothen the path
path = smoothPath(path)
// Set the final route
edge.Route = path
edge.IsCurve = true
// Add arrow direction point for the end
if len(edge.Route) >= 2 {
adjustArrowDirection(edge)
}
}
// smoothPath applies path smoothing to reduce sharp angles
func smoothPath(path []*geo.Point) []*geo.Point {
if len(path) <= 3 {
return path
}
result := []*geo.Point{path[0]}
// Use a simple moving average for interior points
for i := 1; i < len(path)-1; i++ {
prev := path[i-1]
curr := path[i]
next := path[i+1]
// Simple weighted average (current point has more weight)
avgX := (prev.X + 2*curr.X + next.X) / 4
avgY := (prev.Y + 2*curr.Y + next.Y) / 4
result = append(result, geo.NewPoint(avgX, avgY))
}
result = append(result, path[len(path)-1])
return result
}
// adjustArrowDirection ensures the arrow points in the right direction
func adjustArrowDirection(edge *d2graph.Edge) {
lastIndex := len(edge.Route) - 1
lastPoint := edge.Route[lastIndex]
secondLastPoint := edge.Route[lastIndex-1]
// Calculate tangent vector perpendicular to radius (for smooth entry)
tangentX := -lastPoint.Y
tangentY := lastPoint.X
mag := math.Hypot(tangentX, tangentY)
@ -324,27 +117,29 @@ func adjustArrowDirection(edge *d2graph.Edge) {
tangentX /= mag
tangentY /= mag
}
const MIN_SEGMENT_LEN = 4.159
// Check current direction
dx := lastPoint.X - secondLastPoint.X
dy := lastPoint.Y - secondLastPoint.Y
segLength := math.Hypot(dx, dy)
if segLength > 0 {
currentDirX := dx / segLength
currentDirY := dy / segLength
// Adjust only if direction needs correction
dotProduct := currentDirX*tangentX + currentDirY*tangentY
if segLength < MIN_SEGMENT_LEN || dotProduct < 0.9 {
// Create new point for smooth arrow entry
adjustLength := math.Max(MIN_SEGMENT_LEN, segLength * 0.8)
// Check if we need to adjust the direction
if segLength < MIN_SEGMENT_LEN || (currentDirX*tangentX+currentDirY*tangentY) < 0.999 {
// Create new point along tangent direction
adjustLength := MIN_SEGMENT_LEN // Now float64
if segLength >= MIN_SEGMENT_LEN {
adjustLength = segLength // Both are float64 now
}
newSecondLastX := lastPoint.X - tangentX*adjustLength
newSecondLastY := lastPoint.Y - tangentY*adjustLength
edge.Route[lastIndex-1] = geo.NewPoint(newSecondLastX, newSecondLastY)
}
}
}
}
// clampPointOutsideBox walks forward along the path until it finds a point outside the box,
// then replaces the point with a precise intersection.
@ -487,7 +282,7 @@ func trimPathPoints(path []*geo.Point, box *geo.Box) []*geo.Point {
return trimmed
}
// boxContains checks if a point is inside a box (strictly inside, not on boundary)
// boxContains uses strict inequalities so that points exactly on the boundary are considered outside.
func boxContains(b *geo.Box, p *geo.Point) bool {
return p.X > b.TopLeft.X &&
p.X < b.TopLeft.X+b.Width &&
@ -495,47 +290,34 @@ func boxContains(b *geo.Box, p *geo.Point) bool {
p.Y < b.TopLeft.Y+b.Height
}
// positionLabelsIcons positions labels and icons with better handling of overlap
func positionLabelsIcons(obj *d2graph.Object) {
// Handle icon positioning first
if obj.Icon != nil && obj.IconPosition == nil {
if len(obj.ChildrenArray) > 0 {
// For container objects, place icon at top left
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
// If no label position is set, place label at top right
if obj.LabelPosition == nil {
obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
return
}
} else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
// For structured objects, place icon at top left
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
} else {
// For standard objects, center the icon
obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
}
// Now handle label positioning
if obj.HasLabel() && obj.LabelPosition == nil {
if len(obj.ChildrenArray) > 0 {
// For container objects, place label at top center
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else if obj.HasOutsideBottomLabel() {
// For objects with bottom labels, respect that
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
} else if obj.Icon != nil {
// If there's an icon, place label at top center
obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
} else {
// Default positioning in the middle
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
// If label is too large for the object, move it outside
if float64(obj.LabelDimensions.Width) > obj.Width*0.9 ||
float64(obj.LabelDimensions.Height) > obj.Height*0.9 {
if float64(obj.LabelDimensions.Width) > obj.Width ||
float64(obj.LabelDimensions.Height) > obj.Height {
if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else {

File diff suppressed because it is too large Load diff

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 26 KiB

After

Width:  |  Height:  |  Size: 47 KiB

File diff suppressed because it is too large Load diff

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 26 KiB

After

Width:  |  Height:  |  Size: 47 KiB

View file

@ -789,3 +789,11 @@ b -> c: {
shape: cycle
a -> b
}
4: "" {
shape: cycle
a -> b -> c -> d -> e -> f
}
5: "" {
shape: cycle
a -> b -> c -> d -> e
}