try
This commit is contained in:
parent
fd8d01dfe6
commit
f37193a2c6
1 changed files with 263 additions and 263 deletions
|
|
@ -1,337 +1,337 @@
|
|||
package d2cycle
|
||||
|
||||
import (
|
||||
"context"
|
||||
"math"
|
||||
"sort"
|
||||
"context"
|
||||
"math"
|
||||
"sort"
|
||||
|
||||
"oss.terrastruct.com/d2/d2graph"
|
||||
"oss.terrastruct.com/d2/lib/geo"
|
||||
"oss.terrastruct.com/d2/lib/label"
|
||||
"oss.terrastruct.com/util-go/go2"
|
||||
"oss.terrastruct.com/d2/d2graph"
|
||||
"oss.terrastruct.com/d2/lib/geo"
|
||||
"oss.terrastruct.com/d2/lib/label"
|
||||
"oss.terrastruct.com/util-go/go2"
|
||||
)
|
||||
|
||||
const (
|
||||
MIN_RADIUS = 200
|
||||
PADDING = 20
|
||||
MIN_SEGMENT_LEN = 10
|
||||
ARC_STEPS = 100
|
||||
MIN_RADIUS = 200
|
||||
PADDING = 20
|
||||
MIN_SEGMENT_LEN = 10
|
||||
ARC_STEPS = 100
|
||||
)
|
||||
|
||||
// Layout lays out the graph and computes curved edge routes.
|
||||
func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
|
||||
objects := g.Root.ChildrenArray
|
||||
if len(objects) == 0 {
|
||||
return nil
|
||||
}
|
||||
objects := g.Root.ChildrenArray
|
||||
if len(objects) == 0 {
|
||||
return nil
|
||||
}
|
||||
|
||||
for _, obj := range g.Objects {
|
||||
positionLabelsIcons(obj)
|
||||
}
|
||||
for _, obj := range g.Objects {
|
||||
positionLabelsIcons(obj)
|
||||
}
|
||||
|
||||
radius := calculateRadius(objects)
|
||||
positionObjects(objects, radius)
|
||||
radius := calculateRadius(objects)
|
||||
positionObjects(objects, radius)
|
||||
|
||||
for _, edge := range g.Edges {
|
||||
createCircularArc(edge)
|
||||
}
|
||||
for _, edge := range g.Edges {
|
||||
createCircularArc(edge)
|
||||
}
|
||||
|
||||
return nil
|
||||
return nil
|
||||
}
|
||||
|
||||
// calculateRadius computes a radius ensuring that the circular layout does not overlap.
|
||||
// For each object we compute the half-diagonal (i.e. the radius of the minimal enclosing circle),
|
||||
// then ensure the chord between two adjacent centers (2*radius*sin(π/n)) is at least
|
||||
// 2*(maxHalfDiagonal + PADDING). We also add a safety factor (1.2) to avoid floating-point issues.
|
||||
// 2*(maxHalfDiag + PADDING). We also add a safety factor (1.2) to avoid floating-point issues.
|
||||
func calculateRadius(objects []*d2graph.Object) float64 {
|
||||
if len(objects) < 2 {
|
||||
return MIN_RADIUS
|
||||
}
|
||||
numObjects := float64(len(objects))
|
||||
maxHalfDiag := 0.0
|
||||
for _, obj := range objects {
|
||||
halfDiag := math.Hypot(obj.Box.Width/2, obj.Box.Height/2)
|
||||
if halfDiag > maxHalfDiag {
|
||||
maxHalfDiag = halfDiag
|
||||
}
|
||||
}
|
||||
// We need the chord (distance between adjacent centers) to be at least:
|
||||
// 2*(maxHalfDiag + PADDING)
|
||||
// and since chord = 2*radius*sin(π/n), we require:
|
||||
// radius >= (maxHalfDiag + PADDING) / sin(π/n)
|
||||
minRadius := (maxHalfDiag + PADDING) / math.Sin(math.Pi/numObjects)
|
||||
// Apply a safety factor of 1.2 and ensure it doesn't fall below MIN_RADIUS.
|
||||
return math.Max(minRadius*1.2, MIN_RADIUS)
|
||||
if len(objects) < 2 {
|
||||
return MIN_RADIUS
|
||||
}
|
||||
numObjects := float64(len(objects))
|
||||
maxHalfDiag := 0.0
|
||||
for _, obj := range objects {
|
||||
halfDiag := math.Hypot(obj.Box.Width/2, obj.Box.Height/2)
|
||||
if halfDiag > maxHalfDiag {
|
||||
maxHalfDiag = halfDiag
|
||||
}
|
||||
}
|
||||
// We need the chord (distance between adjacent centers) to be at least:
|
||||
// 2*(maxHalfDiag + PADDING)
|
||||
// and since chord = 2*radius*sin(π/n), we require:
|
||||
// radius >= (maxHalfDiag + PADDING) / sin(π/n)
|
||||
minRadius := (maxHalfDiag + PADDING) / math.Sin(math.Pi/numObjects)
|
||||
// Apply a safety factor of 1.2 and ensure it doesn't fall below MIN_RADIUS.
|
||||
return math.Max(minRadius*1.2, MIN_RADIUS)
|
||||
}
|
||||
|
||||
func positionObjects(objects []*d2graph.Object, radius float64) {
|
||||
numObjects := float64(len(objects))
|
||||
angleOffset := -math.Pi / 2
|
||||
numObjects := float64(len(objects))
|
||||
angleOffset := -math.Pi / 2
|
||||
|
||||
for i, obj := range objects {
|
||||
angle := angleOffset + (2*math.Pi*float64(i)/numObjects)
|
||||
x := radius * math.Cos(angle)
|
||||
y := radius * math.Sin(angle)
|
||||
obj.TopLeft = geo.NewPoint(
|
||||
x-obj.Box.Width/2,
|
||||
y-obj.Box.Height/2,
|
||||
)
|
||||
}
|
||||
for i, obj := range objects {
|
||||
angle := angleOffset + (2*math.Pi*float64(i)/numObjects)
|
||||
x := radius * math.Cos(angle)
|
||||
y := radius * math.Sin(angle)
|
||||
obj.TopLeft = geo.NewPoint(
|
||||
x-obj.Box.Width/2,
|
||||
y-obj.Box.Height/2,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
func createCircularArc(edge *d2graph.Edge) {
|
||||
if edge.Src == nil || edge.Dst == nil {
|
||||
return
|
||||
}
|
||||
if edge.Src == nil || edge.Dst == nil {
|
||||
return
|
||||
}
|
||||
|
||||
srcCenter := edge.Src.Center()
|
||||
dstCenter := edge.Dst.Center()
|
||||
srcCenter := edge.Src.Center()
|
||||
dstCenter := edge.Dst.Center()
|
||||
|
||||
srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
|
||||
dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
|
||||
if dstAngle < srcAngle {
|
||||
dstAngle += 2 * math.Pi
|
||||
}
|
||||
srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
|
||||
dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
|
||||
if dstAngle < srcAngle {
|
||||
dstAngle += 2 * math.Pi
|
||||
}
|
||||
|
||||
arcRadius := math.Hypot(srcCenter.X, srcCenter.Y)
|
||||
arcRadius := math.Hypot(srcCenter.X, srcCenter.Y)
|
||||
|
||||
path := make([]*geo.Point, 0, ARC_STEPS+1)
|
||||
for i := 0; i <= ARC_STEPS; i++ {
|
||||
t := float64(i) / float64(ARC_STEPS)
|
||||
angle := srcAngle + t*(dstAngle-srcAngle)
|
||||
x := arcRadius * math.Cos(angle)
|
||||
y := arcRadius * math.Sin(angle)
|
||||
path = append(path, geo.NewPoint(x, y))
|
||||
}
|
||||
path[0] = srcCenter
|
||||
path[len(path)-1] = dstCenter
|
||||
path := make([]*geo.Point, 0, ARC_STEPS+1)
|
||||
for i := 0; i <= ARC_STEPS; i++ {
|
||||
t := float64(i) / float64(ARC_STEPS)
|
||||
angle := srcAngle + t*(dstAngle-srcAngle)
|
||||
x := arcRadius * math.Cos(angle)
|
||||
y := arcRadius * math.Sin(angle)
|
||||
path = append(path, geo.NewPoint(x, y))
|
||||
}
|
||||
path[0] = srcCenter
|
||||
path[len(path)-1] = dstCenter
|
||||
|
||||
// Clamp endpoints to the boundaries of the source and destination boxes.
|
||||
_, newSrc := clampPointOutsideBox(edge.Src.Box, path, 0)
|
||||
_, newDst := clampPointOutsideBoxReverse(edge.Dst.Box, path, len(path)-1)
|
||||
path[0] = newSrc
|
||||
path[len(path)-1] = newDst
|
||||
// Clamp endpoints to the boundaries of the source and destination boxes.
|
||||
_, newSrc := clampPointOutsideBox(edge.Src.Box, path, 0)
|
||||
_, newDst := clampPointOutsideBoxReverse(edge.Dst.Box, path, len(path)-1)
|
||||
path[0] = newSrc
|
||||
path[len(path)-1] = newDst
|
||||
|
||||
// Trim redundant path points that fall inside node boundaries.
|
||||
path = trimPathPoints(path, edge.Src.Box)
|
||||
path = trimPathPoints(path, edge.Dst.Box)
|
||||
// Trim redundant path points that fall inside node boundaries.
|
||||
path = trimPathPoints(path, edge.Src.Box)
|
||||
path = trimPathPoints(path, edge.Dst.Box)
|
||||
|
||||
edge.Route = path
|
||||
edge.IsCurve = true
|
||||
edge.Route = path
|
||||
edge.IsCurve = true
|
||||
|
||||
if len(edge.Route) >= 2 {
|
||||
lastIndex := len(edge.Route) - 1
|
||||
lastPoint := edge.Route[lastIndex]
|
||||
secondLastPoint := edge.Route[lastIndex-1]
|
||||
if len(edge.Route) >= 2 {
|
||||
lastIndex := len(edge.Route) - 1
|
||||
lastPoint := edge.Route[lastIndex]
|
||||
secondLastPoint := edge.Route[lastIndex-1]
|
||||
|
||||
tangentX := -lastPoint.Y
|
||||
tangentY := lastPoint.X
|
||||
mag := math.Hypot(tangentX, tangentY)
|
||||
if mag > 0 {
|
||||
tangentX /= mag
|
||||
tangentY /= mag
|
||||
}
|
||||
const MIN_SEGMENT_LEN = 4.159
|
||||
tangentX := -lastPoint.Y
|
||||
tangentY := lastPoint.X
|
||||
mag := math.Hypot(tangentX, tangentY)
|
||||
if mag > 0 {
|
||||
tangentX /= mag
|
||||
tangentY /= mag
|
||||
}
|
||||
const MIN_SEGMENT_LEN = 4.159
|
||||
|
||||
dx := lastPoint.X - secondLastPoint.X
|
||||
dy := lastPoint.Y - secondLastPoint.Y
|
||||
segLength := math.Hypot(dx, dy)
|
||||
if segLength > 0 {
|
||||
currentDirX := dx / segLength
|
||||
currentDirY := dy / segLength
|
||||
dx := lastPoint.X - secondLastPoint.X
|
||||
dy := lastPoint.Y - secondLastPoint.Y
|
||||
segLength := math.Hypot(dx, dy)
|
||||
if segLength > 0 {
|
||||
currentDirX := dx / segLength
|
||||
currentDirY := dy / segLength
|
||||
|
||||
// Check if we need to adjust the direction
|
||||
if segLength < MIN_SEGMENT_LEN || (currentDirX*tangentX+currentDirY*tangentY) < 0.999 {
|
||||
adjustLength := MIN_SEGMENT_LEN
|
||||
if segLength >= MIN_SEGMENT_LEN {
|
||||
adjustLength = segLength
|
||||
}
|
||||
newSecondLastX := lastPoint.X - tangentX*adjustLength
|
||||
newSecondLastY := lastPoint.Y - tangentY*adjustLength
|
||||
edge.Route[lastIndex-1] = geo.NewPoint(newSecondLastX, newSecondLastY)
|
||||
}
|
||||
}
|
||||
}
|
||||
// Check if we need to adjust the direction
|
||||
if segLength < MIN_SEGMENT_LEN || (currentDirX*tangentX+currentDirY*tangentY) < 0.999 {
|
||||
adjustLength := MIN_SEGMENT_LEN
|
||||
if segLength >= MIN_SEGMENT_LEN {
|
||||
adjustLength = segLength
|
||||
}
|
||||
newSecondLastX := lastPoint.X - tangentX*adjustLength
|
||||
newSecondLastY := lastPoint.Y - tangentY*adjustLength
|
||||
edge.Route[lastIndex-1] = geo.NewPoint(newSecondLastX, newSecondLastY)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// clampPointOutsideBox walks forward along the path until it finds a point outside the box,
|
||||
// then replaces the point with a precise intersection.
|
||||
func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *geo.Point) {
|
||||
if startIdx >= len(path)-1 {
|
||||
return startIdx, path[startIdx]
|
||||
}
|
||||
if !boxContains(box, path[startIdx]) {
|
||||
return startIdx, path[startIdx]
|
||||
}
|
||||
if startIdx >= len(path)-1 {
|
||||
return startIdx, path[startIdx]
|
||||
}
|
||||
if !boxContains(box, path[startIdx]) {
|
||||
return startIdx, path[startIdx]
|
||||
}
|
||||
|
||||
for i := startIdx + 1; i < len(path); i++ {
|
||||
if boxContains(box, path[i]) {
|
||||
continue
|
||||
}
|
||||
seg := geo.NewSegment(path[i-1], path[i])
|
||||
inter := findPreciseIntersection(box, *seg)
|
||||
if inter != nil {
|
||||
return i, inter
|
||||
}
|
||||
return i, path[i]
|
||||
}
|
||||
return len(path)-1, path[len(path)-1]
|
||||
for i := startIdx + 1; i < len(path); i++ {
|
||||
if boxContains(box, path[i]) {
|
||||
continue
|
||||
}
|
||||
seg := geo.NewSegment(path[i-1], path[i])
|
||||
inter := findPreciseIntersection(box, *seg)
|
||||
if inter != nil {
|
||||
return i, inter
|
||||
}
|
||||
return i, path[i]
|
||||
}
|
||||
return len(path)-1, path[len(path)-1]
|
||||
}
|
||||
|
||||
// clampPointOutsideBoxReverse works similarly but in reverse order.
|
||||
func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (int, *geo.Point) {
|
||||
if endIdx <= 0 {
|
||||
return endIdx, path[endIdx]
|
||||
}
|
||||
if !boxContains(box, path[endIdx]) {
|
||||
return endIdx, path[endIdx]
|
||||
}
|
||||
if endIdx <= 0 {
|
||||
return endIdx, path[endIdx]
|
||||
}
|
||||
if !boxContains(box, path[endIdx]) {
|
||||
return endIdx, path[endIdx]
|
||||
}
|
||||
|
||||
for j := endIdx - 1; j >= 0; j-- {
|
||||
if boxContains(box, path[j]) {
|
||||
continue
|
||||
}
|
||||
seg := geo.NewSegment(path[j], path[j+1])
|
||||
inter := findPreciseIntersection(box, *seg)
|
||||
if inter != nil {
|
||||
return j, inter
|
||||
}
|
||||
return j, path[j]
|
||||
}
|
||||
return 0, path[0]
|
||||
for j := endIdx - 1; j >= 0; j-- {
|
||||
if boxContains(box, path[j]) {
|
||||
continue
|
||||
}
|
||||
seg := geo.NewSegment(path[j], path[j+1])
|
||||
inter := findPreciseIntersection(box, *seg)
|
||||
if inter != nil {
|
||||
return j, inter
|
||||
}
|
||||
return j, path[j]
|
||||
}
|
||||
return 0, path[0]
|
||||
}
|
||||
|
||||
// findPreciseIntersection calculates intersection points between seg and all four sides of the box,
|
||||
// then returns the intersection closest to seg.Start.
|
||||
func findPreciseIntersection(box *geo.Box, seg geo.Segment) *geo.Point {
|
||||
intersections := []struct {
|
||||
point *geo.Point
|
||||
t float64
|
||||
}{}
|
||||
intersections := []struct {
|
||||
point *geo.Point
|
||||
t float64
|
||||
}{}
|
||||
|
||||
left := box.TopLeft.X
|
||||
right := box.TopLeft.X + box.Width
|
||||
top := box.TopLeft.Y
|
||||
bottom := box.TopLeft.Y + box.Height
|
||||
left := box.TopLeft.X
|
||||
right := box.TopLeft.X + box.Width
|
||||
top := box.TopLeft.Y
|
||||
bottom := box.TopLeft.Y + box.Height
|
||||
|
||||
dx := seg.End.X - seg.Start.X
|
||||
dy := seg.End.Y - seg.Start.Y
|
||||
dx := seg.End.X - seg.Start.X
|
||||
dy := seg.End.Y - seg.Start.Y
|
||||
|
||||
// Check vertical boundaries.
|
||||
if dx != 0 {
|
||||
t := (left - seg.Start.X) / dx
|
||||
if t >= 0 && t <= 1 {
|
||||
y := seg.Start.Y + t*dy
|
||||
if y >= top && y <= bottom {
|
||||
intersections = append(intersections, struct {
|
||||
point *geo.Point
|
||||
t float64
|
||||
}{geo.NewPoint(left, y), t})
|
||||
}
|
||||
}
|
||||
t = (right - seg.Start.X) / dx
|
||||
if t >= 0 && t <= 1 {
|
||||
y := seg.Start.Y + t*dy
|
||||
if y >= top && y <= bottom {
|
||||
intersections = append(intersections, struct {
|
||||
point *geo.Point
|
||||
t float64
|
||||
}{geo.NewPoint(right, y), t})
|
||||
}
|
||||
}
|
||||
}
|
||||
// Check vertical boundaries.
|
||||
if dx != 0 {
|
||||
t := (left - seg.Start.X) / dx
|
||||
if t >= 0 && t <= 1 {
|
||||
y := seg.Start.Y + t*dy
|
||||
if y >= top && y <= bottom {
|
||||
intersections = append(intersections, struct {
|
||||
point *geo.Point
|
||||
t float64
|
||||
}{geo.NewPoint(left, y), t})
|
||||
}
|
||||
}
|
||||
t = (right - seg.Start.X) / dx
|
||||
if t >= 0 && t <= 1 {
|
||||
y := seg.Start.Y + t*dy
|
||||
if y >= top && y <= bottom {
|
||||
intersections = append(intersections, struct {
|
||||
point *geo.Point
|
||||
t float64
|
||||
}{geo.NewPoint(right, y), t})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check horizontal boundaries.
|
||||
if dy != 0 {
|
||||
t := (top - seg.Start.Y) / dy
|
||||
if t >= 0 && t <= 1 {
|
||||
x := seg.Start.X + t*dx
|
||||
if x >= left && x <= right {
|
||||
intersections = append(intersections, struct {
|
||||
point *geo.Point
|
||||
t float64
|
||||
}{geo.NewPoint(x, top), t})
|
||||
}
|
||||
}
|
||||
t = (bottom - seg.Start.Y) / dy
|
||||
if t >= 0 && t <= 1 {
|
||||
x := seg.Start.X + t*dx
|
||||
if x >= left && x <= right {
|
||||
intersections = append(intersections, struct {
|
||||
point *geo.Point
|
||||
t float64
|
||||
}{geo.NewPoint(x, bottom), t})
|
||||
}
|
||||
}
|
||||
}
|
||||
// Check horizontal boundaries.
|
||||
if dy != 0 {
|
||||
t := (top - seg.Start.Y) / dy
|
||||
if t >= 0 && t <= 1 {
|
||||
x := seg.Start.X + t*dx
|
||||
if x >= left && x <= right {
|
||||
intersections = append(intersections, struct {
|
||||
point *geo.Point
|
||||
t float64
|
||||
}{geo.NewPoint(x, top), t})
|
||||
}
|
||||
}
|
||||
t = (bottom - seg.Start.Y) / dy
|
||||
if t >= 0 && t <= 1 {
|
||||
x := seg.Start.X + t*dx
|
||||
if x >= left && x <= right {
|
||||
intersections = append(intersections, struct {
|
||||
point *geo.Point
|
||||
t float64
|
||||
}{geo.NewPoint(x, bottom), t})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if len(intersections) == 0 {
|
||||
return nil
|
||||
}
|
||||
if len(intersections) == 0 {
|
||||
return nil
|
||||
}
|
||||
|
||||
// Sort intersections by t (distance from seg.Start) and return the closest.
|
||||
sort.Slice(intersections, func(i, j int) bool {
|
||||
return intersections[i].t < intersections[j].t
|
||||
})
|
||||
return intersections[0].point
|
||||
// Sort intersections by t (distance from seg.Start) and return the closest.
|
||||
sort.Slice(intersections, func(i, j int) bool {
|
||||
return intersections[i].t < intersections[j].t
|
||||
})
|
||||
return intersections[0].point
|
||||
}
|
||||
|
||||
// trimPathPoints removes intermediate points that fall inside the given box while preserving endpoints.
|
||||
func trimPathPoints(path []*geo.Point, box *geo.Box) []*geo.Point {
|
||||
if len(path) <= 2 {
|
||||
return path
|
||||
}
|
||||
trimmed := []*geo.Point{path[0]}
|
||||
for i := 1; i < len(path)-1; i++ {
|
||||
if !boxContains(box, path[i]) {
|
||||
trimmed = append(trimmed, path[i])
|
||||
}
|
||||
}
|
||||
trimmed = append(trimmed, path[len(path)-1])
|
||||
return trimmed
|
||||
if len(path) <= 2 {
|
||||
return path
|
||||
}
|
||||
trimmed := []*geo.Point{path[0]}
|
||||
for i := 1; i < len(path)-1; i++ {
|
||||
if !boxContains(box, path[i]) {
|
||||
trimmed = append(trimmed, path[i])
|
||||
}
|
||||
}
|
||||
trimmed = append(trimmed, path[len(path)-1])
|
||||
return trimmed
|
||||
}
|
||||
|
||||
// boxContains uses strict inequalities so that points exactly on the boundary are considered outside.
|
||||
func boxContains(b *geo.Box, p *geo.Point) bool {
|
||||
return p.X > b.TopLeft.X &&
|
||||
p.X < b.TopLeft.X+b.Width &&
|
||||
p.Y > b.TopLeft.Y &&
|
||||
p.Y < b.TopLeft.Y+b.Height
|
||||
return p.X > b.TopLeft.X &&
|
||||
p.X < b.TopLeft.X+b.Width &&
|
||||
p.Y > b.TopLeft.Y &&
|
||||
p.Y < b.TopLeft.Y+b.Height
|
||||
}
|
||||
|
||||
func positionLabelsIcons(obj *d2graph.Object) {
|
||||
if obj.Icon != nil && obj.IconPosition == nil {
|
||||
if len(obj.ChildrenArray) > 0 {
|
||||
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
|
||||
if obj.LabelPosition == nil {
|
||||
obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
|
||||
return
|
||||
}
|
||||
} else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
|
||||
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
|
||||
} else {
|
||||
obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
|
||||
}
|
||||
}
|
||||
if obj.Icon != nil && obj.IconPosition == nil {
|
||||
if len(obj.ChildrenArray) > 0 {
|
||||
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
|
||||
if obj.LabelPosition == nil {
|
||||
obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
|
||||
return
|
||||
}
|
||||
} else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
|
||||
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
|
||||
} else {
|
||||
obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
|
||||
}
|
||||
}
|
||||
|
||||
if obj.HasLabel() && obj.LabelPosition == nil {
|
||||
if len(obj.ChildrenArray) > 0 {
|
||||
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
|
||||
} else if obj.HasOutsideBottomLabel() {
|
||||
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
|
||||
} else if obj.Icon != nil {
|
||||
obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
|
||||
} else {
|
||||
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
|
||||
}
|
||||
if obj.HasLabel() && obj.LabelPosition == nil {
|
||||
if len(obj.ChildrenArray) > 0 {
|
||||
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
|
||||
} else if obj.HasOutsideBottomLabel() {
|
||||
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
|
||||
} else if obj.Icon != nil {
|
||||
obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
|
||||
} else {
|
||||
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
|
||||
}
|
||||
|
||||
if float64(obj.LabelDimensions.Width) > obj.Width ||
|
||||
float64(obj.LabelDimensions.Height) > obj.Height {
|
||||
if len(obj.ChildrenArray) > 0 {
|
||||
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
|
||||
} else {
|
||||
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
|
||||
}
|
||||
}
|
||||
}
|
||||
if float64(obj.LabelDimensions.Width) > obj.Width ||
|
||||
float64(obj.LabelDimensions.Height) > obj.Height {
|
||||
if len(obj.ChildrenArray) > 0 {
|
||||
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
|
||||
} else {
|
||||
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Loading…
Reference in a new issue