package geo import ( "fmt" "math" "sort" "strings" ) //nolint:forbidigo type RelativePoint struct { XPercentage float64 YPercentage float64 } func NewRelativePoint(xPercentage, yPercentage float64) *RelativePoint { // 3 decimal points of precision is enough. Floating points on Bezier curves can reach the level of precision where different machines round differently. return &RelativePoint{ XPercentage: TruncateDecimals(xPercentage), YPercentage: TruncateDecimals(yPercentage), } } type Point struct { X float64 `json:"x"` Y float64 `json:"y"` } func NewPoint(x, y float64) *Point { return &Point{X: x, Y: y} } func (p1 *Point) Equals(p2 *Point) bool { if p1 == nil { return p2 == nil } else if p2 == nil { return false } return (p1.X == p2.X) && (p1.Y == p2.Y) } func (p1 *Point) Compare(p2 *Point) int { xCompare := Sign(p1.X - p2.X) if xCompare == 0 { return Sign(p1.Y - p2.Y) } return xCompare } func (p *Point) Copy() *Point { return &Point{X: p.X, Y: p.Y} } type Points []*Point func (ps Points) Equals(other Points) bool { if ps == nil { return other == nil } else if other == nil { return false } pointsSet := make(map[Point]struct{}) for _, p := range ps { pointsSet[*p] = struct{}{} } for _, otherPoint := range other { if _, exists := pointsSet[*otherPoint]; !exists { return false } } return true } func (ps Points) GetMedian() *Point { xs := make([]float64, 0) ys := make([]float64, 0) for _, p := range ps { xs = append(xs, p.X) ys = append(ys, p.Y) } sort.Float64s(xs) sort.Float64s(ys) middleIndex := len(xs) / 2 medianX := xs[middleIndex] medianY := ys[middleIndex] if len(xs)%2 == 0 { medianX += xs[middleIndex-1] medianX /= 2 medianY += ys[middleIndex-1] medianY /= 2 } return &Point{X: medianX, Y: medianY} } // GetOrientation gets orientation of pFrom to pTo // E.g. pFrom ---> pTo, here, pFrom is to the left of pTo, so Left would be returned func (pFrom *Point) GetOrientation(pTo *Point) Orientation { if pFrom.Y < pTo.Y { if pFrom.X < pTo.X { return TopLeft } if pFrom.X > pTo.X { return TopRight } return Top } if pFrom.Y > pTo.Y { if pFrom.X < pTo.X { return BottomLeft } if pFrom.X > pTo.X { return BottomRight } return Bottom } if pFrom.X < pTo.X { return Left } if pFrom.X > pTo.X { return Right } return NONE } func (p *Point) ToString() string { if p == nil { return "" } return fmt.Sprintf("(%v, %v)", p.X, p.Y) } func (points Points) ToString() string { strs := make([]string, 0, len(points)) for _, p := range points { strs = append(strs, p.ToString()) } return strings.Join(strs, ", ") } // https://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment func (p *Point) DistanceToLine(p1, p2 *Point) float64 { a := p.X - p1.X b := p.Y - p1.Y c := p2.X - p1.X d := p2.Y - p1.Y dot := (a * c) + (b * d) len_sq := (c * c) + (d * d) param := -1.0 if len_sq != 0 { param = dot / len_sq } var xx float64 var yy float64 if param < 0.0 { xx = p1.X yy = p1.Y } else if param > 1.0 { xx = p2.X yy = p2.Y } else { xx = p1.X + (param * c) yy = p1.Y + (param * d) } dx := p.X - xx dy := p.Y - yy return math.Sqrt((dx * dx) + (dy * dy)) } // Moves the given point by Vector func (start *Point) AddVector(v Vector) *Point { return start.toVector().Add(v).ToPoint() } // Creates a Vector of the size between start and endpoint, pointing to endpoint func (start *Point) VectorTo(endpoint *Point) Vector { return endpoint.toVector().Minus(start.toVector()) } func (p *Point) FormattedCoordinates() string { return fmt.Sprintf("%d,%d", int(p.X), int(p.Y)) } func (q *Point) OnSegment(p, r *Point) bool { return (q.X <= math.Max(p.X, r.X)) && (q.X >= math.Min(p.X, r.X)) && (q.Y <= math.Max(p.Y, r.Y)) && (q.Y >= math.Min(p.Y, r.Y)) } // Creates a Vector pointing to point func (endpoint *Point) toVector() Vector { return []float64{endpoint.X, endpoint.Y} } // get the point of intersection between line segments u and v (or nil if they do not intersect) func IntersectionPoint(u0, u1, v0, v1 *Point) *Point { // https://en.wikipedia.org/wiki/Intersection_(Euclidean_geometry) // // Example ('-' = 1, '|' = 1): // v0 // | //u0 -+--- u1 // | // | // v1 // // s = 0.2 (1/5 along u) // t = 0.25 (1/4 along v) // we compute s and t and if they are both in range [0,1], then // they intersect and we compute the point of intersection to return // when s = 0, x = u.Start.X; when s = 1, x = u.End.X // x = s * u1.X + (1 - s) * u0.X // = u0.X + s * (u1.X - u0.X) // x = u0.X + s * (u1.X - u0.X) // = v0.X + t * (v1.X - v0.X) // y = u0.Y + s * (u1.Y - u0.Y) // = v0.Y + t * (v1.Y - v0.Y) // s * (u1.X - u0.X) - t * (v1.X - v0.X) = v0.X - u0.X // s*udx - t*vdx = uvdx // s*udy - t*vdy = uvdy udx := u1.X - u0.X vdx := v1.X - v0.X uvdx := v0.X - u0.X udy := u1.Y - u0.Y vdy := v1.Y - v0.Y uvdy := v0.Y - u0.Y denom := (udy*vdx - udx*vdy) if denom == 0 { // lines are parallel return nil } // Cramer's rule s := (vdx*uvdy - vdy*uvdx) / denom t := (udx*uvdy - udy*uvdx) / denom // lines don't intersect within segments if s < 0 || s > 1 || t < 0 || t > 1 { // if s or t is outside [0, 1], the intersection of the lines are not on the segments return nil } // use s parameter to get point along u intersection := new(Point) intersection.X = u0.X + math.Round(s*udx) intersection.Y = u0.Y + math.Round(s*udy) return intersection } func (p *Point) Transpose() { if p == nil { return } p.X, p.Y = p.Y, p.X }