d2/d2layouts/d2cycle/layout.go
Mayank Mohapatra 04eb007225 try
2025-02-22 16:21:30 +00:00

316 lines
No EOL
8.6 KiB
Go

package d2cycle
import (
"context"
"math"
"sort"
"oss.terrastruct.com/d2/d2graph"
"oss.terrastruct.com/d2/lib/geo"
"oss.terrastruct.com/d2/lib/label"
"oss.terrastruct.com/util-go/go2"
)
const (
MIN_RADIUS = 200
PADDING = 20
MIN_SEGMENT_LEN = 10
ARC_STEPS = 100
)
// Layout lays out the graph and computes curved edge routes.
func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
objects := g.Root.ChildrenArray
if len(objects) == 0 {
return nil
}
for _, obj := range g.Objects {
positionLabelsIcons(obj)
}
radius := calculateRadius(objects)
positionObjects(objects, radius)
for _, edge := range g.Edges {
createCircularArc(edge, radius)
}
return nil
}
// calculateRadius determines the radius of the circular layout based on the number and size of objects.
func calculateRadius(objects []*d2graph.Object) float64 {
numObjects := float64(len(objects))
maxSize := 0.0
for _, obj := range objects {
size := math.Max(obj.Box.Width, obj.Box.Height)
maxSize = math.Max(maxSize, size)
}
minRadius := (maxSize/2.0 + PADDING) / math.Sin(math.Pi/numObjects)
return math.Max(minRadius, MIN_RADIUS)
}
// positionObjects arranges objects in a circular pattern around the origin.
func positionObjects(objects []*d2graph.Object, radius float64) {
numObjects := float64(len(objects))
angleOffset := -math.Pi / 2 // Start at the top of the circle
for i, obj := range objects {
angle := angleOffset + (2*math.Pi*float64(i)/numObjects)
x := radius * math.Cos(angle)
y := radius * math.Sin(angle)
obj.TopLeft = geo.NewPoint(
x-obj.Box.Width/2,
y-obj.Box.Height/2,
)
}
}
// createCircularArc generates a curved edge route with corrected arrow orientation.
func createCircularArc(edge *d2graph.Edge, radius float64) {
if edge.Src == nil || edge.Dst == nil {
return
}
srcCenter := edge.Src.Center()
dstCenter := edge.Dst.Center()
// Generate initial arc path from source center to destination center
path := generateArcPoints(srcCenter, dstCenter, radius, ARC_STEPS)
// Clamp endpoints to the boundaries of the source and destination boxes
_, newSrc := clampPointOutsideBox(edge.Src.Box, path, 0)
_, newDst := clampPointOutsideBoxReverse(edge.Dst.Box, path, len(path)-1)
path[0] = newSrc
path[len(path)-1] = newDst
// Add a point before newDst along the tangent direction to correct arrow orientation
if len(path) >= 2 {
dstAngle := math.Atan2(newDst.Y, newDst.X)
tangent := geo.NewPoint(-math.Sin(dstAngle), math.Cos(dstAngle))
ε := 0.01 * radius // Small offset, e.g., 1% of radius
preDst := geo.NewPoint(newDst.X+ε*tangent.X, newDst.Y+ε*tangent.Y)
// Insert preDst before newDst
path = append(path[:len(path)-1], preDst, newDst)
}
// Trim redundant path points that fall inside node boundaries
path = trimPathPoints(path, edge.Src.Box)
path = trimPathPoints(path, edge.Dst.Box)
edge.Route = path
edge.IsCurve = true
}
// generateArcPoints creates points along a circular arc from src to dst.
func generateArcPoints(src, dst *geo.Point, radius float64, steps int) []*geo.Point {
// Calculate angles relative to the center (0,0)
srcAngle := math.Atan2(src.Y, src.X)
dstAngle := math.Atan2(dst.Y, dst.X)
// Ensure the arc goes the shorter way
if dstAngle < srcAngle {
dstAngle += 2 * math.Pi
}
angleDiff := dstAngle - srcAngle
if angleDiff > math.Pi {
dstAngle -= 2 * math.Pi
}
// Generate points along the arc
path := make([]*geo.Point, 0, steps+1)
for i := 0; i <= steps; i++ {
t := float64(i) / float64(steps)
angle := srcAngle + t*(dstAngle-srcAngle)
x := radius * math.Cos(angle)
y := radius * math.Sin(angle)
path = append(path, geo.NewPoint(x, y))
}
return path
}
// clampPointOutsideBox finds the first point outside the box and computes the precise intersection.
func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *geo.Point) {
if startIdx >= len(path)-1 {
return startIdx, path[startIdx]
}
if !boxContains(box, path[startIdx]) {
return startIdx, path[startIdx]
}
for i := startIdx + 1; i < len(path); i++ {
if boxContains(box, path[i]) {
continue
}
seg := geo.NewSegment(path[i-1], path[i])
inter := findPreciseIntersection(box, *seg)
if inter != nil {
return i, inter
}
return i, path[i]
}
return len(path)-1, path[len(path)-1]
}
// clampPointOutsideBoxReverse works similarly but traverses the path in reverse.
func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (int, *geo.Point) {
if endIdx <= 0 {
return endIdx, path[endIdx]
}
if !boxContains(box, path[endIdx]) {
return endIdx, path[endIdx]
}
for j := endIdx - 1; j >= 0; j-- {
if boxContains(box, path[j]) {
continue
}
seg := geo.NewSegment(path[j], path[j+1])
inter := findPreciseIntersection(box, *seg)
if inter != nil {
return j, inter
}
return j, path[j]
}
return 0, path[0]
}
// findPreciseIntersection calculates the closest intersection between a segment and box boundaries.
func findPreciseIntersection(box *geo.Box, seg geo.Segment) *geo.Point {
intersections := []struct {
point *geo.Point
t float64
}{}
left := box.TopLeft.X
right := box.TopLeft.X + box.Width
top := box.TopLeft.Y
bottom := box.TopLeft.Y + box.Height
dx := seg.End.X - seg.Start.X
dy := seg.End.Y - seg.Start.Y
// Check vertical boundaries
if dx != 0 {
// Left boundary
t := (left - seg.Start.X) / dx
if t >= 0 && t <= 1 {
y := seg.Start.Y + t*dy
if y >= top && y <= bottom {
intersections = append(intersections, struct {
point *geo.Point
t float64
}{geo.NewPoint(left, y), t})
}
}
// Right boundary
t = (right - seg.Start.X) / dx
if t >= 0 && t <= 1 {
y := seg.Start.Y + t*dy
if y >= top && y <= bottom {
intersections = append(intersections, struct {
point *geo.Point
t float64
}{geo.NewPoint(right, y), t})
}
}
}
// Check horizontal boundaries
if dy != 0 {
// Top boundary
t := (top - seg.Start.Y) / dy
if t >= 0 && t <= 1 {
x := seg.Start.X + t*dx
if x >= left && x <= right {
intersections = append(intersections, struct {
point *geo.Point
t float64
}{geo.NewPoint(x, top), t})
}
}
// Bottom boundary
t = (bottom - seg.Start.Y) / dy
if t >= 0 && t <= 1 {
x := seg.Start.X + t*dx
if x >= left && x <= right {
intersections = append(intersections, struct {
point *geo.Point
t float64
}{geo.NewPoint(x, bottom), t})
}
}
}
if len(intersections) == 0 {
return nil
}
// Sort intersections by t (distance from seg.Start) and return the closest
sort.Slice(intersections, func(i, j int) bool {
return intersections[i].t < intersections[j].t
})
return intersections[0].point
}
// trimPathPoints removes intermediate points inside the box while retaining endpoints.
func trimPathPoints(path []*geo.Point, box *geo.Box) []*geo.Point {
if len(path) <= 2 {
return path
}
trimmed := []*geo.Point{path[0]}
for i := 1; i < len(path)-1; i++ {
if !boxContains(box, path[i]) {
trimmed = append(trimmed, path[i])
}
}
trimmed = append(trimmed, path[len(path)-1])
return trimmed
}
// boxContains checks if a point is strictly inside the box (boundary points are outside).
func boxContains(b *geo.Box, p *geo.Point) bool {
return p.X > b.TopLeft.X &&
p.X < b.TopLeft.X+b.Width &&
p.Y > b.TopLeft.Y &&
p.Y < b.TopLeft.Y+b.Height
}
// positionLabelsIcons sets default positions for labels and icons on objects.
func positionLabelsIcons(obj *d2graph.Object) {
if obj.Icon != nil && obj.IconPosition == nil {
if len(obj.ChildrenArray) > 0 {
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
if obj.LabelPosition == nil {
obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
return
}
} else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
} else {
obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
}
if obj.HasLabel() && obj.LabelPosition == nil {
if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else if obj.HasOutsideBottomLabel() {
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
} else if obj.Icon != nil {
obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
} else {
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
if float64(obj.LabelDimensions.Width) > obj.Width ||
float64(obj.LabelDimensions.Height) > obj.Height {
if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else {
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
}
}
}
}