d2/d2layouts/d2cycle/layout.go
Mayank Mohapatra 17cca5ee89 try
2025-02-22 13:39:54 +00:00

318 lines
No EOL
8.3 KiB
Go

package d2cycle
import (
"context"
"math"
"sort"
"oss.terrastruct.com/d2/d2graph"
"oss.terrastruct.com/d2/lib/geo"
"oss.terrastruct.com/d2/lib/label"
"oss.terrastruct.com/util-go/go2"
)
const (
MIN_RADIUS = 200
PADDING = 20
MIN_SEGMENT_LEN = 10
ARC_STEPS = 100
)
// Layout lays out the graph and computes curved edge routes.
func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
objects := g.Root.ChildrenArray
if len(objects) == 0 {
return nil
}
for _, obj := range g.Objects {
positionLabelsIcons(obj)
}
radius := calculateRadius(objects)
positionObjects(objects, radius)
for _, edge := range g.Edges {
createCircularArc(edge)
}
return nil
}
func calculateRadius(objects []*d2graph.Object) float64 {
numObjects := float64(len(objects))
maxSize := 0.0
for _, obj := range objects {
size := math.Max(obj.Box.Width, obj.Box.Height)
maxSize = math.Max(maxSize, size)
}
minRadius := (maxSize/2.0 + PADDING) / math.Sin(math.Pi/numObjects)
return math.Max(minRadius, MIN_RADIUS)
}
func positionObjects(objects []*d2graph.Object, radius float64) {
numObjects := float64(len(objects))
angleOffset := -math.Pi / 2
for i, obj := range objects {
angle := angleOffset + (2*math.Pi*float64(i)/numObjects)
x := radius * math.Cos(angle)
y := radius * math.Sin(angle)
obj.TopLeft = geo.NewPoint(
x-obj.Box.Width/2,
y-obj.Box.Height/2,
)
}
}
func createCircularArc(edge *d2graph.Edge) {
if edge.Src == nil || edge.Dst == nil {
return
}
srcCenter := edge.Src.Center()
dstCenter := edge.Dst.Center()
srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
if dstAngle < srcAngle {
dstAngle += 2 * math.Pi
}
arcRadius := math.Hypot(srcCenter.X, srcCenter.Y)
path := make([]*geo.Point, 0, ARC_STEPS+1)
for i := 0; i <= ARC_STEPS; i++ {
t := float64(i) / float64(ARC_STEPS)
angle := srcAngle + t*(dstAngle-srcAngle)
x := arcRadius * math.Cos(angle)
y := arcRadius * math.Sin(angle)
path = append(path, geo.NewPoint(x, y))
}
path[0] = srcCenter
path[len(path)-1] = dstCenter
// Clamp endpoints to the boundaries of the source and destination boxes.
_, newSrc := clampPointOutsideBox(edge.Src.Box, path, 0)
_, newDst := clampPointOutsideBoxReverse(edge.Dst.Box, path, len(path)-1)
path[0] = newSrc
path[len(path)-1] = newDst
// Trim redundant path points that fall inside node boundaries.
// path = trimPathPoints(path, edge.Src.Box)
// path = trimPathPoints(path, edge.Dst.Box)
// edge.Route = path
// edge.IsCurve = true
// }
path = trimPathPoints(path, edge.Src.Box)
path = trimPathPoints(path, edge.Dst.Box)
// Adjust the last two points to align the arrow direction with the arc's tangent at the destination.
if len(path) >= 2 {
dstPoint := path[len(path)-1]
// Calculate the tangent direction at the destination point (counter-clockwise)
tangentX := dstPoint.Y
tangentY := dstPoint.X
// Normalize the tangent vector
length := math.Hypot(tangentX, tangentY)
if length > 0 {
tangentX /= length
tangentY /= length
}
// Adjust the penultimate point to be a small step back along the tangent direction
step := 10.0
prevX := dstPoint.X - tangentX*step
prevY := dstPoint.Y - tangentY*step
path[len(path)-2] = geo.NewPoint(prevX, prevY)
}
edge.Route = path
edge.IsCurve = true
}
// clampPointOutsideBox walks forward along the path until it finds a point outside the box,
// then replaces the point with a precise intersection.
func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *geo.Point) {
if startIdx >= len(path)-1 {
return startIdx, path[startIdx]
}
if !boxContains(box, path[startIdx]) {
return startIdx, path[startIdx]
}
for i := startIdx + 1; i < len(path); i++ {
if boxContains(box, path[i]) {
continue
}
seg := geo.NewSegment(path[i-1], path[i])
inter := findPreciseIntersection(box, *seg)
if inter != nil {
return i, inter
}
return i, path[i]
}
return len(path)-1, path[len(path)-1]
}
// clampPointOutsideBoxReverse works similarly but in reverse order.
func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (int, *geo.Point) {
if endIdx <= 0 {
return endIdx, path[endIdx]
}
if !boxContains(box, path[endIdx]) {
return endIdx, path[endIdx]
}
for j := endIdx - 1; j >= 0; j-- {
if boxContains(box, path[j]) {
continue
}
seg := geo.NewSegment(path[j], path[j+1])
inter := findPreciseIntersection(box, *seg)
if inter != nil {
return j, inter
}
return j, path[j]
}
return 0, path[0]
}
// findPreciseIntersection calculates intersection points between seg and all four sides of the box,
// then returns the intersection closest to seg.Start.
func findPreciseIntersection(box *geo.Box, seg geo.Segment) *geo.Point {
intersections := []struct {
point *geo.Point
t float64
}{}
left := box.TopLeft.X
right := box.TopLeft.X + box.Width
top := box.TopLeft.Y
bottom := box.TopLeft.Y + box.Height
dx := seg.End.X - seg.Start.X
dy := seg.End.Y - seg.Start.Y
// Check vertical boundaries.
if dx != 0 {
// Left boundary.
t := (left - seg.Start.X) / dx
if t >= 0 && t <= 1 {
y := seg.Start.Y + t*dy
if y >= top && y <= bottom {
intersections = append(intersections, struct {
point *geo.Point
t float64
}{geo.NewPoint(left, y), t})
}
}
// Right boundary.
t = (right - seg.Start.X) / dx
if t >= 0 && t <= 1 {
y := seg.Start.Y + t*dy
if y >= top && y <= bottom {
intersections = append(intersections, struct {
point *geo.Point
t float64
}{geo.NewPoint(right, y), t})
}
}
}
// Check horizontal boundaries.
if dy != 0 {
// Top boundary.
t := (top - seg.Start.Y) / dy
if t >= 0 && t <= 1 {
x := seg.Start.X + t*dx
if x >= left && x <= right {
intersections = append(intersections, struct {
point *geo.Point
t float64
}{geo.NewPoint(x, top), t})
}
}
// Bottom boundary.
t = (bottom - seg.Start.Y) / dy
if t >= 0 && t <= 1 {
x := seg.Start.X + t*dx
if x >= left && x <= right {
intersections = append(intersections, struct {
point *geo.Point
t float64
}{geo.NewPoint(x, bottom), t})
}
}
}
if len(intersections) == 0 {
return nil
}
// Sort intersections by t (distance from seg.Start) and return the closest.
sort.Slice(intersections, func(i, j int) bool {
return intersections[i].t < intersections[j].t
})
return intersections[0].point
}
// trimPathPoints removes intermediate points that fall inside the given box while preserving endpoints.
func trimPathPoints(path []*geo.Point, box *geo.Box) []*geo.Point {
if len(path) <= 2 {
return path
}
trimmed := []*geo.Point{path[0]}
for i := 1; i < len(path)-1; i++ {
if !boxContains(box, path[i]) {
trimmed = append(trimmed, path[i])
}
}
trimmed = append(trimmed, path[len(path)-1])
return trimmed
}
// boxContains uses strict inequalities so that points exactly on the boundary are considered outside.
func boxContains(b *geo.Box, p *geo.Point) bool {
return p.X > b.TopLeft.X &&
p.X < b.TopLeft.X+b.Width &&
p.Y > b.TopLeft.Y &&
p.Y < b.TopLeft.Y+b.Height
}
func positionLabelsIcons(obj *d2graph.Object) {
if obj.Icon != nil && obj.IconPosition == nil {
if len(obj.ChildrenArray) > 0 {
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
if obj.LabelPosition == nil {
obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
return
}
} else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
} else {
obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
}
if obj.HasLabel() && obj.LabelPosition == nil {
if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else if obj.HasOutsideBottomLabel() {
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
} else if obj.Icon != nil {
obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
} else {
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
if float64(obj.LabelDimensions.Width) > obj.Width ||
float64(obj.LabelDimensions.Height) > obj.Height {
if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else {
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
}
}
}
}