d2/d2oracle/edit.go
2022-12-01 11:48:49 -08:00

2103 lines
53 KiB
Go

package d2oracle
import (
"errors"
"fmt"
"strconv"
"strings"
"unicode"
"oss.terrastruct.com/util-go/xdefer"
"oss.terrastruct.com/util-go/xrand"
"oss.terrastruct.com/util-go/go2"
"oss.terrastruct.com/d2/d2ast"
"oss.terrastruct.com/d2/d2compiler"
"oss.terrastruct.com/d2/d2format"
"oss.terrastruct.com/d2/d2graph"
"oss.terrastruct.com/d2/d2parser"
"oss.terrastruct.com/d2/d2target"
)
func Create(g *d2graph.Graph, key string) (_ *d2graph.Graph, newKey string, err error) {
defer xdefer.Errorf(&err, "failed to create %#v", key)
newKey, edge, err := generateUniqueKey(g, key)
if err != nil {
return nil, "", err
}
if edge {
err = _set(g, key, nil, nil)
} else {
err = _set(g, newKey, nil, nil)
}
if err != nil {
return nil, "", err
}
g, err = recompile(g)
if err != nil {
return nil, "", err
}
return g, newKey, nil
}
// TODO: update graph in place when compiler can accept single modifications
// TODO: go through all references to decide best spot to insert something
func Set(g *d2graph.Graph, key string, tag, value *string) (_ *d2graph.Graph, err error) {
var valueHelp string
if value == nil {
valueHelp = fmt.Sprintf("%#v", value)
} else {
valueHelp = fmt.Sprintf("%#v", *value)
}
if tag != nil {
defer xdefer.Errorf(&err, "failed to set %#v to %#v %#v", key, *tag, valueHelp)
} else {
defer xdefer.Errorf(&err, "failed to set %#v to %#v", key, valueHelp)
}
err = _set(g, key, tag, value)
if err != nil {
return nil, err
}
return recompile(g)
}
func recompile(g *d2graph.Graph) (*d2graph.Graph, error) {
s := d2format.Format(g.AST)
g, err := d2compiler.Compile(g.AST.Range.Path, strings.NewReader(s), nil)
if err != nil {
return nil, fmt.Errorf("failed to recompile:\n%s\n%w", s, err)
}
return g, nil
}
// TODO merge flat styles
func _set(g *d2graph.Graph, key string, tag, value *string) error {
if tag != nil {
if hasSpace(*tag) {
return fmt.Errorf("spaces are not allowed in blockstring tags")
}
}
mk, err := d2parser.ParseMapKey(key)
if err != nil {
return err
}
if len(mk.Edges) > 1 {
return errors.New("can only set one edge at a time")
}
if value != nil {
mk.Value = d2ast.MakeValueBox(d2ast.RawString(*value, false))
} else {
mk.Value = d2ast.ValueBox{}
}
if tag != nil && value != nil {
mk.Value = d2ast.MakeValueBox(&d2ast.BlockString{
Tag: *tag,
Value: *value,
})
}
scope := g.AST
edgeTrimCommon(mk)
obj := g.Root
toSkip := 1
reserved := false
if mk.Key != nil {
found := true
for _, idel := range d2graph.Key(mk.Key) {
_, ok := d2graph.ReservedKeywords[idel]
if ok {
reserved = true
break
}
o, ok := obj.HasChild([]string{idel})
if !ok {
found = false
break
}
obj = o
if obj.Map == nil {
// If we find a deeper obj.Map we need to skip this key too.
toSkip++
continue
}
scope = obj.Map
mk.Key.Path = mk.Key.Path[toSkip:]
toSkip = 1
if len(mk.Key.Path) == 0 {
mk.Key = nil
}
}
if obj.Attributes.Label.MapKey != nil && obj.Map == nil && (!found || reserved || len(mk.Edges) > 0) {
obj.Map = &d2ast.Map{
Range: d2ast.MakeRange(",1:0:0-1:0:0"),
}
obj.Attributes.Label.MapKey.Primary = obj.Attributes.Label.MapKey.Value.ScalarBox()
obj.Attributes.Label.MapKey.Value = d2ast.MakeValueBox(obj.Map)
scope = obj.Map
mk.Key.Path = mk.Key.Path[toSkip-1:]
toSkip = 1
if len(mk.Key.Path) == 0 {
mk.Key = nil
}
}
if !found {
appendMapKey(scope, mk)
return nil
}
}
attrs := obj.Attributes
if len(mk.Edges) == 1 {
if mk.EdgeIndex == nil {
appendMapKey(scope, mk)
return nil
}
edge, ok := obj.HasEdge(mk)
if !ok {
return errors.New("edge not found")
}
onlyInChain := true
for _, ref := range edge.References {
// TODO merge flat edgekeys
// E.g. this can group into a map
// (y -> z)[0].style.opacity: 0.4
// (y -> z)[0].style.animated: true
if len(ref.MapKey.Edges) == 1 && ref.MapKey.EdgeIndex == nil {
onlyInChain = false
break
}
}
if onlyInChain {
appendMapKey(scope, mk)
return nil
}
attrs = edge.Attributes
if mk.EdgeKey != nil {
if _, ok := d2graph.ReservedKeywords[mk.EdgeKey.Path[0].Unbox().ScalarString()]; !ok {
return errors.New("edge key must be reserved")
}
reserved = true
toSkip = 1
mk = &d2ast.Key{
Key: cloneKey(mk.EdgeKey),
Value: mk.Value,
}
foundMap := false
for _, ref := range edge.References {
// TODO get the most nested one
if ref.MapKey.Value.Map != nil {
foundMap = true
scope = ref.MapKey.Value.Map
// TODO when edges can have more fields, search for style
if len(scope.Nodes) == 1 && scope.Nodes[0].MapKey.Value.Map != nil {
scope = scope.Nodes[0].MapKey.Value.Map
mk.Key.Path = mk.Key.Path[1:]
}
break
}
}
if !foundMap && attrs.Label.MapKey != nil {
attrs.Label.MapKey.Primary = attrs.Label.MapKey.Value.ScalarBox()
edgeMap := &d2ast.Map{
Range: d2ast.MakeRange(",1:0:0-1:0:0"),
}
attrs.Label.MapKey.Value = d2ast.MakeValueBox(edgeMap)
scope = edgeMap
}
}
}
if reserved {
reservedIndex := toSkip - 1
if mk.Key != nil && len(mk.Key.Path) > 0 {
switch mk.Key.Path[reservedIndex].Unbox().ScalarString() {
case "shape":
if attrs.Shape.MapKey != nil {
attrs.Shape.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
case "style":
if len(mk.Key.Path[reservedIndex:]) != 2 {
return errors.New("malformed style setting, expected 2 part path")
}
switch mk.Key.Path[reservedIndex+1].Unbox().ScalarString() {
case "opacity":
if attrs.Style.Opacity != nil {
attrs.Style.Opacity.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
case "stroke":
if attrs.Style.Stroke != nil {
attrs.Style.Stroke.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
case "fill":
if attrs.Style.Fill != nil {
attrs.Style.Fill.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
case "stroke-width":
if attrs.Style.StrokeWidth != nil {
attrs.Style.StrokeWidth.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
case "stroke-dash":
if attrs.Style.StrokeDash != nil {
attrs.Style.StrokeDash.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
case "border-radius":
if attrs.Style.BorderRadius != nil {
attrs.Style.BorderRadius.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
case "shadow":
if attrs.Style.Shadow != nil {
attrs.Style.Shadow.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
case "3d":
if attrs.Style.ThreeDee != nil {
attrs.Style.ThreeDee.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
case "multiple":
if attrs.Style.Multiple != nil {
attrs.Style.Multiple.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
case "font":
if attrs.Style.Font != nil {
attrs.Style.Font.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
case "font-size":
if attrs.Style.FontSize != nil {
attrs.Style.FontSize.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
case "font-color":
if attrs.Style.FontColor != nil {
attrs.Style.FontColor.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
case "animated":
if attrs.Style.Animated != nil {
attrs.Style.Animated.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
case "bold":
if attrs.Style.Bold != nil {
attrs.Style.Bold.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
case "italic":
if attrs.Style.Italic != nil {
attrs.Style.Italic.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
case "underline":
if attrs.Style.Underline != nil {
attrs.Style.Underline.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
}
case "label":
if attrs.Label.MapKey != nil {
attrs.Label.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
}
}
} else if attrs.Label.MapKey != nil {
attrs.Label.MapKey.SetScalar(mk.Value.ScalarBox())
return nil
}
appendMapKey(scope, mk)
return nil
}
func appendUniqueMapKey(m *d2ast.Map, mk *d2ast.Key) {
for _, n := range m.Nodes {
if n.MapKey != nil && n.MapKey.Equals(mk) {
return
}
}
appendMapKey(m, mk)
}
func appendMapKey(m *d2ast.Map, mk *d2ast.Key) {
m.Nodes = append(m.Nodes, d2ast.MapNodeBox{
MapKey: mk,
})
if len(m.Nodes) == 1 &&
mk.Key != nil &&
len(mk.Key.Path) > 0 {
_, ok := d2graph.ReservedKeywords[mk.Key.Path[0].Unbox().ScalarString()]
if ok {
// Allow one line reserved key (like shape) maps.
// TODO: This needs to be smarter as certain keys are only reserved in context.
// e.g. all keys under style are reserved. And constraint is only reserved
// under sql_table shapes.
return
}
}
if !m.IsFileMap() && m.Range.OneLine() {
// This doesn't require any shenanigans to prevent consuming sibling spacing because
// d2format will use the mapkey's range to determine whether to insert extra newlines.
// See TestCreate/make_scope_multiline_spacing_2
m.Range.End.Line++
}
}
func Delete(g *d2graph.Graph, key string) (_ *d2graph.Graph, err error) {
defer xdefer.Errorf(&err, "failed to delete %#v", key)
mk, err := d2parser.ParseMapKey(key)
if err != nil {
return nil, err
}
if len(mk.Edges) > 1 {
return nil, errors.New("can only delete one edge at a time")
}
if len(mk.Edges) == 1 {
edgeTrimCommon(mk)
}
g2, err := deleteReserved(g, mk)
if err != nil {
return nil, err
}
if g != g2 {
return g2, nil
}
g = g2
if len(mk.Edges) == 1 {
obj := g.Root
if mk.Key != nil {
var ok bool
obj, ok = g.Root.HasChild(d2graph.Key(mk.Key))
if !ok {
return g, nil
}
}
e, ok := obj.HasEdge(mk)
if !ok {
return g, nil
}
ref := e.References[0]
var refEdges []*d2ast.Edge
for _, ref := range e.References {
refEdges = append(refEdges, ref.Edge)
}
ensureNode(g, refEdges, ref.ScopeObj, ref.Scope, ref.MapKey, ref.MapKey.Edges[ref.MapKeyEdgeIndex].Src, true)
ensureNode(g, refEdges, ref.ScopeObj, ref.Scope, ref.MapKey, ref.MapKey.Edges[ref.MapKeyEdgeIndex].Dst, false)
for i := len(e.References) - 1; i >= 0; i-- {
ref := e.References[i]
deleteEdge(g, ref.Scope, ref.MapKey, ref.MapKeyEdgeIndex)
}
edges, ok := obj.FindEdges(mk)
if ok {
for _, e2 := range edges {
if e2.Index <= e.Index {
continue
}
for i := len(e2.References) - 1; i >= 0; i-- {
ref := e2.References[i]
if ref.MapKey.EdgeIndex != nil {
*ref.MapKey.EdgeIndex.Int--
}
}
}
}
return recompile(g)
}
prevG, _ := recompile(g)
g, err = renameConflictsToParent(g, mk.Key)
if err != nil {
return nil, err
}
obj, ok := g.Root.HasChild(d2graph.Key(mk.Key))
if !ok {
return g, nil
}
g, err = deleteObject(g, mk.Key, obj)
if err != nil {
return nil, err
}
if err := updateNear(prevG, g, &key, nil); err != nil {
return nil, err
}
return recompile(g)
}
func bumpChildrenUnderscores(m *d2ast.Map) {
for _, n := range m.Nodes {
if n.MapKey == nil {
continue
}
if n.MapKey.Key != nil {
if n.MapKey.Key.Path[0].Unbox().ScalarString() == "_" {
n.MapKey.Key.Path = n.MapKey.Key.Path[1:]
}
}
for _, e := range n.MapKey.Edges {
if e.Src.Path[0].Unbox().ScalarString() == "_" {
e.Src.Path = e.Src.Path[1:]
}
if e.Dst.Path[0].Unbox().ScalarString() == "_" {
e.Dst.Path = e.Dst.Path[1:]
}
}
if n.MapKey.Value.Map != nil {
bumpChildrenUnderscores(n.MapKey.Value.Map)
}
}
}
func hoistRefChildren(g *d2graph.Graph, key *d2ast.KeyPath, ref d2graph.Reference) {
if ref.MapKey.Value.Map == nil {
return
}
bumpChildrenUnderscores(ref.MapKey.Value.Map)
scopeKey, scope := findNearestParentScope(g, key)
for i := 0; i < len(ref.MapKey.Value.Map.Nodes); i++ {
n := ref.MapKey.Value.Map.Nodes[i]
if n.MapKey == nil {
continue
}
if n.MapKey.Key != nil {
_, ok := d2graph.ReservedKeywords[n.MapKey.Key.Path[0].Unbox().ScalarString()]
if ok {
continue
}
}
scopeKey := cloneKey(scopeKey)
scopeKey.Path = scopeKey.Path[:len(scopeKey.Path)-1]
if n.MapKey.Key != nil {
scopeKey.Path = append(scopeKey.Path, n.MapKey.Key.Path...)
}
if len(scopeKey.Path) > 0 {
n.MapKey.Key = scopeKey
}
scope.InsertBefore(ref.MapKey, n.Unbox())
}
}
// renameConflictsToParent renames would-be ID conflicts.
func renameConflictsToParent(g *d2graph.Graph, key *d2ast.KeyPath) (*d2graph.Graph, error) {
obj, ok := g.Root.HasChild(d2graph.Key(key))
if !ok {
return g, nil
}
if obj.Attributes.Shape.Value == d2target.ShapeSQLTable || obj.Attributes.Shape.Value == d2target.ShapeClass {
return g, nil
}
dedupedRenames := map[string]struct{}{}
for _, ref := range obj.References {
var absKeys []*d2ast.KeyPath
if len(ref.Key.Path)-1 == ref.KeyPathIndex {
if ref.MapKey.Value.Map == nil {
continue
}
var mapKeys []*d2ast.KeyPath
for _, n := range ref.MapKey.Value.Map.Nodes {
if n.MapKey == nil {
continue
}
if n.MapKey.Key != nil {
_, ok := d2graph.ReservedKeywords[n.MapKey.Key.Path[0].Unbox().ScalarString()]
if ok {
continue
}
mapKeys = append(mapKeys, n.MapKey.Key)
}
for _, e := range n.MapKey.Edges {
mapKeys = append(mapKeys, e.Src)
mapKeys = append(mapKeys, e.Dst)
}
}
for _, k := range mapKeys {
absKey, err := d2parser.ParseKey(ref.ScopeObj.AbsID())
if err != nil {
absKey = &d2ast.KeyPath{}
}
absKey.Path = append(absKey.Path, ref.Key.Path...)
absKey.Path = append(absKey.Path, k.Path[0])
absKeys = append(absKeys, absKey)
}
} else if _, ok := d2graph.ReservedKeywords[ref.Key.Path[len(ref.Key.Path)-1].Unbox().ScalarString()]; !ok {
absKey, err := d2parser.ParseKey(ref.ScopeObj.AbsID())
if err != nil {
absKey = &d2ast.KeyPath{}
}
absKey.Path = append(absKey.Path, ref.Key.Path[:ref.KeyPathIndex+2]...)
absKeys = append(absKeys, absKey)
}
for _, absKey := range absKeys {
ida := d2graph.Key(absKey)
absKeyStr := strings.Join(ida, ".")
if _, ok := dedupedRenames[absKeyStr]; ok {
continue
}
dedupedRenames[absKeyStr] = struct{}{}
// Do not consider the parent for conflicts, assume the parent will be deleted
if ida[len(ida)-1] == ida[len(ida)-2] {
continue
}
hoistedAbsKey, err := d2parser.ParseKey(ref.ScopeObj.AbsID())
if err != nil {
hoistedAbsKey = &d2ast.KeyPath{}
}
hoistedAbsKey.Path = append(hoistedAbsKey.Path, ref.Key.Path[:ref.KeyPathIndex]...)
hoistedAbsKey.Path = append(hoistedAbsKey.Path, absKey.Path[len(absKey.Path)-1])
uniqueKeyStr, _, err := generateUniqueKey(g, strings.Join(d2graph.Key(hoistedAbsKey), "."))
if err != nil {
return nil, err
}
uniqueKey, err := d2parser.ParseKey(uniqueKeyStr)
if err != nil {
return nil, err
}
renamedKey := cloneKey(absKey)
renamedKey.Path[len(renamedKey.Path)-1].Unbox().SetString(uniqueKey.Path[len(uniqueKey.Path)-1].Unbox().ScalarString())
renamedKeyStr := strings.Join(d2graph.Key(renamedKey), ".")
if absKeyStr != renamedKeyStr {
g, err = move(g, absKeyStr, renamedKeyStr)
if err != nil {
return nil, err
}
}
}
}
return g, nil
}
func deleteReserved(g *d2graph.Graph, mk *d2ast.Key) (*d2graph.Graph, error) {
targetKey := mk.Key
if len(mk.Edges) == 1 {
if mk.EdgeKey == nil {
return g, nil
}
targetKey = mk.EdgeKey
}
_, ok := d2graph.ReservedKeywords[targetKey.Path[len(targetKey.Path)-1].Unbox().ScalarString()]
if !ok {
return g, nil
}
var e *d2graph.Edge
obj := g.Root
if len(mk.Edges) == 1 {
if mk.Key != nil {
var ok bool
obj, ok = g.Root.HasChild(d2graph.Key(mk.Key))
if !ok {
return g, nil
}
}
e, ok = obj.HasEdge(mk)
if !ok {
return g, nil
}
if err := deleteEdgeField(g, e, targetKey.Path[len(targetKey.Path)-1].Unbox().ScalarString()); err != nil {
return nil, err
}
return recompile(g)
}
isStyleKey := false
for _, id := range d2graph.Key(targetKey) {
_, ok := d2graph.ReservedKeywords[id]
if ok {
if id == "style" {
isStyleKey = true
continue
}
if isStyleKey {
err := deleteObjField(g, obj, id)
if err != nil {
return nil, err
}
}
if id == "near" ||
id == "tooltip" ||
id == "icon" ||
id == "link" {
err := deleteObjField(g, obj, id)
if err != nil {
return nil, err
}
}
break
}
obj, ok = obj.HasChild([]string{id})
if !ok {
return nil, fmt.Errorf("object not found")
}
}
return recompile(g)
}
func deleteMapField(m *d2ast.Map, field string) {
for i := 0; i < len(m.Nodes); i++ {
n := m.Nodes[i]
if n.MapKey != nil && n.MapKey.Key != nil {
if n.MapKey.Key.Path[0].Unbox().ScalarString() == field {
deleteFromMap(m, n.MapKey)
} else if n.MapKey.Key.Path[0].Unbox().ScalarString() == "style" {
if n.MapKey.Value.Map != nil {
deleteMapField(n.MapKey.Value.Map, field)
if len(n.MapKey.Value.Map.Nodes) == 0 {
deleteFromMap(m, n.MapKey)
}
} else if len(n.MapKey.Key.Path) == 2 && n.MapKey.Key.Path[1].Unbox().ScalarString() == field {
deleteFromMap(m, n.MapKey)
}
}
}
}
}
func deleteEdgeField(g *d2graph.Graph, e *d2graph.Edge, field string) error {
for _, ref := range e.References {
// Edge chains can't have fields
if len(ref.MapKey.Edges) > 1 {
continue
}
if ref.MapKey.Value.Map != nil {
deleteMapField(ref.MapKey.Value.Map, field)
} else if ref.MapKey.EdgeKey != nil && ref.MapKey.EdgeKey.Path[len(ref.MapKey.EdgeKey.Path)-1].Unbox().ScalarString() == field {
// It's always safe to delete, since edge references must coexist with edge definition elsewhere
deleteFromMap(ref.Scope, ref.MapKey)
}
}
return nil
}
func deleteObjField(g *d2graph.Graph, obj *d2graph.Object, field string) error {
objK, err := d2parser.ParseKey(obj.AbsID())
if err != nil {
return err
}
objGK := d2graph.Key(objK)
for _, ref := range obj.References {
if ref.InEdge() {
continue
}
if ref.MapKey.Value.Map != nil {
deleteMapField(ref.MapKey.Value.Map, field)
} else if (len(ref.Key.Path) >= 2 &&
ref.Key.Path[len(ref.Key.Path)-1].Unbox().ScalarString() == field &&
ref.Key.Path[len(ref.Key.Path)-2].Unbox().ScalarString() == obj.ID) ||
(len(ref.Key.Path) >= 3 &&
ref.Key.Path[len(ref.Key.Path)-1].Unbox().ScalarString() == field &&
ref.Key.Path[len(ref.Key.Path)-2].Unbox().ScalarString() == "style" &&
ref.Key.Path[len(ref.Key.Path)-3].Unbox().ScalarString() == obj.ID) {
tmpNodes := make([]d2ast.MapNodeBox, len(ref.Scope.Nodes))
copy(tmpNodes, ref.Scope.Nodes)
// If I delete this, will the object still exist?
deleteFromMap(ref.Scope, ref.MapKey)
g2, err := recompile(g)
if err != nil {
return err
}
if _, ok := g2.Root.HasChild(objGK); !ok {
// Nope, so can't delete it, just remove the field then
ref.Scope.Nodes = tmpNodes
ref.MapKey.Value = d2ast.ValueBox{}
ref.Key.Path = ref.Key.Path[:ref.KeyPathIndex+1]
}
}
}
return nil
}
func deleteObject(g *d2graph.Graph, key *d2ast.KeyPath, obj *d2graph.Object) (*d2graph.Graph, error) {
var refEdges []*d2ast.Edge
for _, ref := range obj.References {
if ref.InEdge() {
refEdges = append(refEdges, ref.MapKey.Edges[ref.MapKeyEdgeIndex])
}
}
for i := len(obj.References) - 1; i >= 0; i-- {
ref := obj.References[i]
if len(ref.MapKey.Edges) == 0 {
isSuffix := ref.KeyPathIndex == len(ref.Key.Path)-1
ref.Key.Path = append(ref.Key.Path[:ref.KeyPathIndex], ref.Key.Path[ref.KeyPathIndex+1:]...)
withoutReserved := go2.Filter(ref.Key.Path, func(x *d2ast.StringBox) bool {
_, ok := d2graph.ReservedKeywords[x.Unbox().ScalarString()]
return !ok
})
if obj.Attributes.Shape.Value == d2target.ShapeSQLTable || obj.Attributes.Shape.Value == d2target.ShapeClass {
ref.MapKey.Value.Map = nil
} else if len(withoutReserved) == 0 {
hoistRefChildren(g, key, ref)
deleteFromMap(ref.Scope, ref.MapKey)
} else if ref.MapKey.Value.Unbox() == nil &&
obj.Parent != nil &&
isSuffix &&
len(obj.Parent.References) > 1 {
// Redundant key.
deleteFromMap(ref.Scope, ref.MapKey)
} else if ref.MapKey.Value.Map != nil {
for i := 0; i < len(ref.MapKey.Value.Map.Nodes); i++ {
n := ref.MapKey.Value.Map.Nodes[i]
if n.MapKey != nil && n.MapKey.Key != nil {
_, ok := d2graph.ReservedKeywords[n.MapKey.Key.Path[0].Unbox().ScalarString()]
if ok {
deleteFromMap(ref.MapKey.Value.Map, n.MapKey)
i--
continue
}
}
}
}
} else if ref.InEdge() {
edge := ref.MapKey.Edges[ref.MapKeyEdgeIndex]
if obj.Attributes.Shape.Value == d2target.ShapeSQLTable || obj.Attributes.Shape.Value == d2target.ShapeClass {
if ref.MapKeyEdgeDest() {
ensureNode(g, refEdges, ref.ScopeObj, ref.Scope, ref.MapKey, edge.Src, true)
} else {
ensureNode(g, refEdges, ref.ScopeObj, ref.Scope, ref.MapKey, edge.Dst, false)
}
deleteEdge(g, ref.Scope, ref.MapKey, ref.MapKeyEdgeIndex)
} else if ref.KeyPathIndex == len(ref.Key.Path)-1 {
if ref.MapKeyEdgeDest() {
ensureNode(g, refEdges, ref.ScopeObj, ref.Scope, ref.MapKey, edge.Src, true)
} else {
ensureNode(g, refEdges, ref.ScopeObj, ref.Scope, ref.MapKey, edge.Dst, false)
}
deleteEdge(g, ref.Scope, ref.MapKey, ref.MapKeyEdgeIndex)
} else {
ref.Key.Path = append(ref.Key.Path[:ref.KeyPathIndex], ref.Key.Path[ref.KeyPathIndex+1:]...)
// Skip visiting the same middle key in an edge chain
if !ref.MapKeyEdgeDest() && i > 0 {
nextRef := obj.References[i-1]
if nextRef.InEdge() && nextRef.MapKey == ref.MapKey {
i--
}
}
}
} else {
// MapKey.Key with edge.
ref.Key.Path = append(ref.Key.Path[:ref.KeyPathIndex], ref.Key.Path[ref.KeyPathIndex+1:]...)
if len(ref.Key.Path) == 0 {
ref.MapKey.Key = nil
}
}
}
return g, nil
}
func findNearestParentScope(g *d2graph.Graph, k *d2ast.KeyPath) (prefix *d2ast.KeyPath, _ *d2ast.Map) {
for i := 1; i < len(k.Path); i++ {
scopeKey := cloneKey(k)
scopeKey.Path = scopeKey.Path[:len(k.Path)-i]
obj, ok := g.Root.HasChild(d2graph.Key(scopeKey))
if ok && obj.Map != nil {
prefix := cloneKey(k)
prefix.Path = prefix.Path[len(k.Path)-i:]
return prefix, obj.Map
}
}
return k, g.AST
}
func deleteEdge(g *d2graph.Graph, scope *d2ast.Map, mk *d2ast.Key, i int) {
edgesAfter := mk.Edges[i+1:]
mk.Edges = mk.Edges[:i]
for _, obj := range g.Objects {
for j := range obj.References {
ref := obj.References[j]
if ref.InEdge() {
if ref.MapKey == mk && ref.MapKeyEdgeIndex >= i {
obj.References[j].MapKeyEdgeIndex -= i
}
}
}
}
if len(edgesAfter) > 0 {
tmp := *mk
mk2 := &tmp
mk2.Edges = edgesAfter
scope.InsertAfter(mk, mk2)
}
if len(mk.Edges) == 0 {
deleteFromMap(scope, mk)
}
}
func ensureNode(g *d2graph.Graph, excludedEdges []*d2ast.Edge, scopeObj *d2graph.Object, scope *d2ast.Map, cursor *d2ast.Key, k *d2ast.KeyPath, before bool) {
if k == nil || len(k.Path) == 0 {
return
}
if cursor.Key != nil && len(cursor.Key.Path) > 0 {
k = cloneKey(k)
k.Path = append(cursor.Key.Path, k.Path...)
}
obj, ok := scopeObj.HasChild(d2graph.Key(k))
if ok {
// If this key only exists as part of excludedEdges (edges that'll be deleted), we need to make a new one
hasPersistingRef := false
for _, ref := range obj.References {
if !ref.InEdge() {
hasPersistingRef = true
break
}
if len(ref.MapKey.Edges) == 0 {
continue
}
if !go2.Contains(excludedEdges, ref.MapKey.Edges[ref.MapKeyEdgeIndex]) {
hasPersistingRef = true
break
}
}
if hasPersistingRef {
return
}
}
mk := &d2ast.Key{
Key: k,
}
for _, n := range scope.Nodes {
if n.MapKey != nil && n.MapKey.Equals(mk) {
return
}
}
if before {
scope.InsertBefore(cursor, mk)
} else {
scope.InsertAfter(cursor, mk)
}
}
func Rename(g *d2graph.Graph, key, newName string) (_ *d2graph.Graph, err error) {
defer xdefer.Errorf(&err, "failed to rename %#v to %#v", key, newName)
mk, err := d2parser.ParseMapKey(key)
if err != nil {
return nil, err
}
if len(mk.Edges) > 0 && mk.EdgeKey == nil {
// TODO: Not a fan of this dual interpretation depending on mk.Edges.
// Maybe we remove Rename and just have Move.
mk2, err := d2parser.ParseMapKey(newName)
if err != nil {
return nil, err
}
mk2.Key = mk.Key
mk = mk2
} else {
_, ok := d2graph.ReservedKeywords[newName]
if ok {
return nil, fmt.Errorf("cannot rename to reserved keyword: %#v", newName)
}
// TODO: Handle mk.EdgeKey
mk.Key.Path[len(mk.Key.Path)-1] = d2ast.MakeValueBox(d2ast.RawString(newName, true)).StringBox()
}
return move(g, key, d2format.Format(mk))
}
func trimReservedSuffix(path []*d2ast.StringBox) []*d2ast.StringBox {
for i, p := range path {
if _, ok := d2graph.ReservedKeywords[p.Unbox().ScalarString()]; ok {
return path[:i]
}
}
return path
}
// Does not handle edge keys, on account of edge keys can only be reserved, e.g. (a->b).style.color: red
func Move(g *d2graph.Graph, key, newKey string) (_ *d2graph.Graph, err error) {
defer xdefer.Errorf(&err, "failed to move: %#v to %#v", key, newKey)
return move(g, key, newKey)
}
func move(g *d2graph.Graph, key, newKey string) (*d2graph.Graph, error) {
if key == newKey {
return g, nil
}
newKey, _, err := generateUniqueKey(g, newKey)
if err != nil {
return nil, err
}
mk, err := d2parser.ParseMapKey(key)
if err != nil {
return nil, err
}
mk2, err := d2parser.ParseMapKey(newKey)
if err != nil {
return nil, err
}
edgeTrimCommon(mk)
edgeTrimCommon(mk2)
if len(mk.Edges) > 0 && mk.EdgeKey == nil {
if d2format.Format(mk.Key) != d2format.Format(mk2.Key) {
// TODO just prevent moving edges at all
return nil, errors.New("moving across scopes isn't supported for edges")
}
obj := g.Root
if mk.Key != nil {
var ok bool
obj, ok = g.Root.HasChild(d2graph.Key(mk.Key))
if !ok {
return nil, fmt.Errorf("edge referenced by from does not exist")
}
}
e, ok := obj.HasEdge(mk)
if !ok {
return nil, fmt.Errorf("edge referenced by to does not exist")
}
_, ok = obj.HasEdge(mk2)
if ok {
return nil, fmt.Errorf("to edge already exists")
}
for i := len(e.References) - 1; i >= 0; i-- {
ref := e.References[i]
ref.MapKey.Edges[ref.MapKeyEdgeIndex].SrcArrow = mk2.Edges[0].SrcArrow
ref.MapKey.Edges[ref.MapKeyEdgeIndex].DstArrow = mk2.Edges[0].DstArrow
}
return recompile(g)
}
prevG, _ := recompile(g)
ak := d2graph.Key(mk.Key)
ak2 := d2graph.Key(mk2.Key)
isCrossScope := strings.Join(ak[:len(ak)-1], ".") != strings.Join(ak2[:len(ak2)-1], ".")
if isCrossScope {
g, err = renameConflictsToParent(g, mk.Key)
if err != nil {
return nil, err
}
}
obj, ok := g.Root.HasChild(ak)
if !ok {
return nil, fmt.Errorf("key referenced by from does not exist")
}
toParent := g.Root
if isCrossScope && len(ak2) > 1 {
toParent, ok = g.Root.HasChild(ak2[:len(ak2)-1])
if !ok {
return nil, fmt.Errorf("key referenced by to parent does not exist")
}
}
// Cross-scope move:
// 1. Ensure parent node exists as a Key
// 2. Ensure parent node Key has a map to accept moved node
// 3. Rename
// 4. Update all Key references
// 5. Update all Edge references
// 1. Ensure parent node exists as a Key
// The toParent may only exist as an implicit, edge-created node
//
// For example, d.e here
// a.b.c -> d.e.f
// MOVE(a.b, d.e.q)
// We can't open d.e as a map, so we need to create a new key
// If the key targeted exists only as implicit edge creation, e.g. the b in `a.b -> ...`,
// then we'll be able to move it anywhere by changing that key, e.g. `_._.c.x -> ...`
// Otherwise, we'll need to make sure the parent exists as a map to move into
needsLandingMap := false
if isCrossScope {
for _, ref := range obj.References {
if !ref.InEdge() {
needsLandingMap = true
break
}
if ref.KeyPathIndex != len(ref.Key.Path)-1 {
needsLandingMap = true
break
}
}
}
if isCrossScope && len(ak2) > 1 && needsLandingMap {
parentExistsAsKey := false
for _, ref := range toParent.References {
if len(ref.MapKey.Edges) == 0 {
parentExistsAsKey = true
break
}
}
if !parentExistsAsKey {
// Choose the most nested edge as cursor for this new node
var mostNestedRef d2graph.Reference
for _, ref := range toParent.References {
if mostNestedRef == (d2graph.Reference{}) || len(ref.ScopeObj.AbsIDArray()) > len(mostNestedRef.ScopeObj.AbsIDArray()) {
mostNestedRef = ref
}
}
detachedMK := &d2ast.Key{
Key: cloneKey(mostNestedRef.MapKey.Key),
}
detachedMK.Key.Path = mostNestedRef.Key.Path[:mostNestedRef.KeyPathIndex+1]
detachedMK.Range = d2ast.MakeRange(",1:0:0-1:0:0")
mostNestedRef.Scope.InsertAfter(mostNestedRef.MapKey, detachedMK)
mostNestedRef.ScopeObj.AppendReferences(d2graph.Key(detachedMK.Key), d2graph.Reference{
Key: detachedMK.Key,
MapKey: detachedMK,
Scope: mostNestedRef.Scope,
}, mostNestedRef.UnresolvedScopeObj)
}
}
// 2. Ensure parent node Key has a map to accept moved node.
// This map will be what MOVE will append the new key to
toScope := g.AST
if isCrossScope && len(ak2) > 1 && needsLandingMap {
mostNestedParentRefs := getMostNestedRefs(toParent)
mapExists := false
for _, ref := range mostNestedParentRefs {
if ref.KeyPathIndex == len(ref.Key.Path)-1 && ref.MapKey.Value.Map != nil {
toScope = ref.MapKey.Value.Map
mapExists = true
break
}
}
if !mapExists {
toScope = &d2ast.Map{
Range: d2ast.MakeRange(",1:0:0-1:0:0"),
}
ref := mostNestedParentRefs[len(mostNestedParentRefs)-1]
// Parent node key exists as part of a flat key, need to split up
if ref.KeyPathIndex < len(ref.Key.Path)-1 {
detachedMK := &d2ast.Key{
Key: cloneKey(ref.MapKey.Key),
}
detachedMK.Value = ref.MapKey.Value
detachedMK.Key.Path = ref.Key.Path[ref.KeyPathIndex+1:]
detachedMK.Range = d2ast.MakeRange(",1:0:0-1:0:0")
ref.Key.Path = ref.Key.Path[:ref.KeyPathIndex+1]
appendUniqueMapKey(toScope, detachedMK)
} else {
ref.MapKey.Primary = ref.MapKey.Value.ScalarBox()
}
ref.MapKey.Value = d2ast.MakeValueBox(toScope)
}
}
mostNestedRefs := getMostNestedRefs(obj)
for _, ref := range obj.References {
isExplicit := ref.KeyPathIndex == len(trimReservedSuffix(ref.Key.Path))-1 && ref.MapKey.Value.Map == nil
// 3. Rename
if ak[len(ak)-1] != ak2[len(ak2)-1] {
ref.Key.Path[ref.KeyPathIndex] = d2ast.MakeValueBox(d2ast.RawString(
mk2.Key.Path[len(mk2.Key.Path)-1].Unbox().ScalarString(),
true,
)).StringBox()
}
// 4. Update all Key references
if len(ref.MapKey.Edges) != 0 {
continue
}
ida := d2graph.Key(ref.Key)
resolvedObj, resolvedIDA, err := d2graph.ResolveUnderscoreKey(ida, obj)
if err != nil {
return nil, err
}
if resolvedObj != obj {
ida = resolvedIDA
}
ida = go2.Filter(ida, func(x string) bool {
_, ok := d2graph.ReservedKeywords[x]
return !ok
})
// There are 3 cases of what we want to do with Key references in cross scope
// 1. Transplant. Remove from its current scope, plop it into new scope
// -- The ref key is the key being moved
// 2. Split. One node remains, while another gets added to new scope
// -- The ref key is a flat map with more than just the key being moved
// 3. Extend.
// -- The key is moving from its current scope into a more nested scope
// 4. Slice.
// -- The key is moving from its current scope out to a less nested scope
if isCrossScope {
if len(ida) == 1 {
// 1. Transplant
absKey, err := d2parser.ParseKey(ref.ScopeObj.AbsID())
if err != nil {
absKey = &d2ast.KeyPath{}
}
absKey.Path = append(absKey.Path, ref.Key.Path...)
hoistRefChildren(g, absKey, ref)
deleteFromMap(ref.Scope, ref.MapKey)
detachedMK := &d2ast.Key{Primary: ref.MapKey.Primary, Key: cloneKey(ref.MapKey.Key)}
detachedMK.Key.Path = go2.Filter(detachedMK.Key.Path, func(x *d2ast.StringBox) bool {
return x.Unbox().ScalarString() != "_"
})
detachedMK.Value = ref.MapKey.Value
if ref.MapKey != nil && ref.MapKey.Value.Map != nil {
detachedMK.Value.Map = &d2ast.Map{
Range: ref.MapKey.Value.Map.Range,
}
for _, n := range ref.MapKey.Value.Map.Nodes {
if n.MapKey == nil {
continue
}
if n.MapKey.Key != nil {
_, ok := d2graph.ReservedKeywords[n.MapKey.Key.Path[0].Unbox().ScalarString()]
if ok {
detachedMK.Value.Map.Nodes = append(detachedMK.Value.Map.Nodes, n)
}
}
}
if len(detachedMK.Value.Map.Nodes) == 0 {
detachedMK.Value.Map = nil
}
}
appendUniqueMapKey(toScope, detachedMK)
} else if len(ida) > 1 && (!isExplicit || go2.Contains(mostNestedRefs, ref)) {
// 2. Split
detachedMK := &d2ast.Key{Key: cloneKey(ref.MapKey.Key)}
detachedMK.Key.Path = []*d2ast.StringBox{ref.Key.Path[ref.KeyPathIndex]}
if ref.KeyPathIndex == len(ref.Key.Path)-1 {
withReserved, withoutReserved := filterReserved(ref.MapKey.Value)
detachedMK.Value = withReserved
ref.MapKey.Value = withoutReserved
}
ref.Key.Path = append(ref.Key.Path[:ref.KeyPathIndex], ref.Key.Path[ref.KeyPathIndex+1:]...)
appendUniqueMapKey(toScope, detachedMK)
} else if len(getCommonPath(ak, ak2)) > 0 {
// 3. Extend
newKeyPath := ref.Key.Path[:ref.KeyPathIndex]
newKeyPath = append(newKeyPath, mk2.Key.Path[len(getCommonPath(ak, ak2)):]...)
ref.Key.Path = append(newKeyPath, ref.Key.Path[ref.KeyPathIndex+1:]...)
} else {
// 4. Slice
scopePath := ref.ScopeObj.AbsIDArray()
if len(getCommonPath(scopePath, ak2)) != len(scopePath) {
deleteFromMap(ref.Scope, ref.MapKey)
} else {
ref.Key.Path = ref.Key.Path[ref.KeyPathIndex:]
exists := false
for _, n := range toScope.Nodes {
if n.MapKey != nil && n.MapKey != ref.MapKey && n.MapKey.Equals(ref.MapKey) {
exists = true
}
}
if exists {
deleteFromMap(ref.Scope, ref.MapKey)
}
}
}
}
}
var refEdges []*d2ast.Edge
for _, ref := range obj.References {
if ref.InEdge() {
refEdges = append(refEdges, ref.MapKey.Edges[ref.MapKeyEdgeIndex])
}
}
for i := 0; i < len(obj.References); i++ {
if !isCrossScope {
break
}
ref := obj.References[i]
// 5. Update all Edge references
if len(ref.MapKey.Edges) == 0 {
continue
}
if i > 0 && ref.Key == obj.References[i-1].Key {
continue
}
// We don't want this to be underscore-resolved scope. We want to ignore underscores
var scopeak []string
if ref.UnresolvedScopeObj != g.Root {
scopek, err := d2parser.ParseKey(ref.UnresolvedScopeObj.AbsID())
if err != nil {
return nil, err
}
scopeak = d2graph.Key(scopek)
}
commonPath := getCommonPath(scopeak, ak2)
// When moving a node out of an edge, e.g. the `b` out of `a.b.c -> ...`,
// The edge needs to continue targeting the same thing (c)
if ref.KeyPathIndex != len(ref.Key.Path)-1 {
// Split
detachedMK := &d2ast.Key{
Key: cloneKey(ref.Key),
}
detachedMK.Key.Path = []*d2ast.StringBox{ref.Key.Path[ref.KeyPathIndex]}
appendUniqueMapKey(toScope, detachedMK)
ref.Key.Path = append(ref.Key.Path[:ref.KeyPathIndex], ref.Key.Path[ref.KeyPathIndex+1:]...)
} else {
// When moving a node connected to an edge, we have to ensure parents continue to exist
// e.g. the `c` out of `a.b.c -> ...`
// `a.b` needs to exist
if len(go2.Filter(ref.Key.Path, func(x *d2ast.StringBox) bool { return x.Unbox().ScalarString() != "_" })) > 1 {
detachedK := cloneKey(ref.Key)
detachedK.Path = detachedK.Path[:len(detachedK.Path)-1]
ensureNode(g, refEdges, ref.ScopeObj, ref.Scope, ref.MapKey, detachedK, false)
}
// Move out to most common scope
ref.Key.Path = nil
for i := len(commonPath); i < len(scopeak); i++ {
ref.Key.Path = append(ref.Key.Path, d2ast.MakeValueBox(d2ast.RawString("_", true)).StringBox())
}
// From most common scope, target the toKey
ref.Key.Path = append(ref.Key.Path, mk2.Key.Path[len(commonPath):]...)
}
}
if err := updateNear(prevG, g, &key, &newKey); err != nil {
return nil, err
}
return recompile(g)
}
// filterReserved takes a Value and splits it into 2
// 1. Value with reserved keywords
// 2. Without reserved keywords
// Maintains structure, so if reserved keywords were part of map, the output will keep them in a map
func filterReserved(value d2ast.ValueBox) (with, without d2ast.ValueBox) {
with, without = d2ast.MakeValueBox(value.Unbox()), d2ast.ValueBox{}
if value.Map != nil {
var forWith []d2ast.MapNodeBox
var forWithout []d2ast.MapNodeBox
// assume comments are above what they describe
// going down the map line by line, we batch here as we encounter, and flush to either forWith or forWithout, whichever hits first
var commentBatch []d2ast.MapNodeBox
flushComments := func(to *[]d2ast.MapNodeBox) {
*to = append(*to, commentBatch...)
commentBatch = nil
}
for _, n := range value.Map.Nodes {
if n.MapKey == nil {
if n.Comment != nil || n.BlockComment != nil {
commentBatch = append(commentBatch, n)
}
continue
}
if n.MapKey.Key == nil || (len(n.MapKey.Key.Path) > 1) {
flushComments(&forWithout)
forWithout = append(forWithout, n)
continue
}
_, ok := d2graph.ReservedKeywords[n.MapKey.Key.Path[0].Unbox().ScalarString()]
if !ok {
flushComments(&forWithout)
forWithout = append(forWithout, n)
continue
}
flushComments(&forWith)
forWith = append(forWith, n)
}
if len(forWith) > 0 {
if with.Map == nil {
with.Map = &d2ast.Map{
Range: d2ast.MakeRange(",1:0:0-1:0:0"),
}
}
with.Map.Nodes = forWith
} else {
with.Map = nil
}
if len(forWithout) > 0 {
if without.Map == nil {
without.Map = &d2ast.Map{
Range: value.Map.Range,
}
}
without.Map.Nodes = forWithout
} else {
without.Map = nil
}
}
return
}
// updateNear updates all the Near fields
// prevG is the graph before the update (i.e. deletion, rename, move)
func updateNear(prevG, g *d2graph.Graph, from, to *string) error {
mk, _ := d2parser.ParseMapKey(*from)
if len(mk.Edges) > 0 {
return nil
}
if mk.Key == nil {
return nil
}
if len(mk.Key.Path) == 0 {
return nil
}
for _, obj := range g.Objects {
if obj.Map == nil {
continue
}
for _, n := range obj.Map.Nodes {
if n.MapKey == nil {
continue
}
if n.MapKey.Key == nil {
continue
}
if len(n.MapKey.Key.Path) == 0 {
continue
}
if n.MapKey.Key.Path[0].Unbox().ScalarString() == "near" {
k := n.MapKey.Value.ScalarBox().Unbox().ScalarString()
if strings.EqualFold(k, *from) && to == nil {
deleteFromMap(obj.Map, n.MapKey)
} else {
valueMK, err := d2parser.ParseMapKey(k)
if err != nil {
return err
}
tmpG, _ := recompile(prevG)
appendMapKey(tmpG.AST, valueMK)
if to == nil {
deltas, err := DeleteIDDeltas(tmpG, *from)
if err != nil {
return err
}
if v, ok := deltas[k]; ok {
n.MapKey.Value = d2ast.MakeValueBox(d2ast.RawString(v, false))
}
} else {
deltas, err := MoveIDDeltas(tmpG, *from, *to)
if err != nil {
return err
}
if v, ok := deltas[k]; ok {
n.MapKey.Value = d2ast.MakeValueBox(d2ast.RawString(v, false))
}
}
}
}
}
}
return nil
}
func deleteFromMap(m *d2ast.Map, mk *d2ast.Key) bool {
for i, n := range m.Nodes {
if n.MapKey == mk {
m.Nodes = append(m.Nodes[:i], m.Nodes[i+1:]...)
return true
}
}
return false
}
func ReparentIDDelta(g *d2graph.Graph, key, parentKey string) (string, error) {
mk, err := d2parser.ParseMapKey(key)
if err != nil {
return "", err
}
obj, ok := g.Root.HasChild(d2graph.Key(mk.Key))
if !ok {
return "", errors.New("not found")
}
parent := g.Root
if parentKey != "" {
mk2, err := d2parser.ParseMapKey(parentKey)
if err != nil {
return "", err
}
parent, ok = g.Root.HasChild(d2graph.Key(mk2.Key))
if !ok {
return "", errors.New("not found")
}
}
prevParent := obj.Parent
obj.Parent = parent
id := obj.AbsID()
obj.Parent = prevParent
return id, nil
}
func ReconnectEdgeIDDelta(g *d2graph.Graph, edgeID, srcID, dstID string) (string, error) {
mk, err := d2parser.ParseMapKey(edgeID)
if err != nil {
return "", err
}
edgeTrimCommon(mk)
obj := g.Root
if mk.Key != nil {
var ok bool
obj, ok = g.Root.HasChild(d2graph.Key(mk.Key))
if !ok {
return "", errors.New("edge key not found")
}
}
e, ok := obj.HasEdge(mk)
if !ok {
return "", fmt.Errorf("edge %v not found", edgeID)
}
if e.Src.AbsID() == srcID && e.Dst.AbsID() == dstID {
return edgeID, nil
}
oldSrc := e.Src
oldDst := e.Dst
if e.Src.AbsID() != srcID {
mk, err := d2parser.ParseMapKey(srcID)
if err != nil {
return "", err
}
src, ok := g.Root.HasChild(d2graph.Key(mk.Key))
if !ok {
return "", fmt.Errorf("src %v not found", srcID)
}
e.Src = src
}
if e.Dst.AbsID() != dstID {
mk, err := d2parser.ParseMapKey(dstID)
if err != nil {
return "", err
}
dst, ok := g.Root.HasChild(d2graph.Key(mk.Key))
if !ok {
return "", fmt.Errorf("dst %v not found", dstID)
}
e.Dst = dst
}
newID := fmt.Sprintf("%s %s %s", e.Src.AbsID(), e.ArrowString(), e.Dst.AbsID())
e.Src = oldSrc
e.Dst = oldDst
return newID, nil
}
func generateUniqueKey(g *d2graph.Graph, prefix string) (key string, edge bool, _ error) {
mk, err := d2parser.ParseMapKey(prefix)
if err != nil {
return "", false, err
}
if len(mk.Edges) > 1 {
return "", false, errors.New("cannot generate unique key for edge chain")
}
if len(mk.Edges) == 1 {
if mk.EdgeIndex == nil || mk.EdgeIndex.Int == nil {
mk.EdgeIndex = &d2ast.EdgeIndex{
Int: go2.Pointer(0),
}
}
edgeTrimCommon(mk)
obj := g.Root
if mk.Key != nil {
var ok bool
obj, ok = g.Root.HasChild(d2graph.Key(mk.Key))
if !ok {
return d2format.Format(mk), true, nil
}
}
for {
_, ok := obj.HasEdge(mk)
if !ok {
return d2format.Format(mk), true, nil
}
mk.EdgeIndex.Int = go2.Pointer(*mk.EdgeIndex.Int + 1)
}
}
// If a key is not provided, we generate one.
if mk.Key == nil {
mk.Key = &d2ast.KeyPath{
Path: []*d2ast.StringBox{d2ast.MakeValueBox(d2ast.RawString(xrand.Base64(16), true)).StringBox()},
}
} else if _, ok := g.Root.HasChild(d2graph.Key(mk.Key)); ok {
// The key may already have an index, e.g. "x 2"
spaced := strings.Split(prefix, " ")
if _, err := strconv.Atoi(spaced[len(spaced)-1]); err == nil {
withoutIndex := strings.Join(spaced[:len(spaced)-1], " ")
mk, err = d2parser.ParseMapKey(withoutIndex)
if err != nil {
return "", false, err
}
}
}
k2 := cloneKey(mk.Key)
i := 0
for {
_, ok := g.Root.HasChild(d2graph.Key(k2))
if !ok {
return d2format.Format(k2), false, nil
}
rr := fmt.Sprintf("%s %d", mk.Key.Path[len(mk.Key.Path)-1].Unbox().ScalarString(), i+2)
k2.Path[len(k2.Path)-1] = d2ast.MakeValueBox(d2ast.RawString(rr, true)).StringBox()
i++
}
}
func cloneKey(k *d2ast.KeyPath) *d2ast.KeyPath {
if k == nil {
return &d2ast.KeyPath{}
}
tmp := *k
k2 := &tmp
k2.Path = nil
for _, p := range k.Path {
k2.Path = append(k2.Path, d2ast.MakeValueBox(p.Unbox().Copy()).StringBox())
}
return k2
}
func getCommonPath(a, b []string) []string {
var out []string
for i := 0; i < len(a) && i < len(b); i++ {
if a[i] == b[i] {
out = a[:i+1]
}
}
return out
}
func edgeTrimCommon(mk *d2ast.Key) {
if len(mk.Edges) != 1 {
return
}
e := mk.Edges[0]
for len(e.Src.Path) > 1 && len(e.Dst.Path) > 1 {
if !strings.EqualFold(e.Src.Path[0].Unbox().ScalarString(), e.Dst.Path[0].Unbox().ScalarString()) {
return
}
if mk.Key == nil {
mk.Key = &d2ast.KeyPath{}
}
mk.Key.Path = append(mk.Key.Path, e.Src.Path[0])
e.Src.Path = e.Src.Path[1:]
e.Dst.Path = e.Dst.Path[1:]
}
}
func MoveIDDeltas(g *d2graph.Graph, key, newKey string) (deltas map[string]string, err error) {
defer xdefer.Errorf(&err, "failed to get deltas for move from %#v to %#v", key, newKey)
deltas = make(map[string]string)
if key == newKey {
return deltas, nil
}
mk, err := d2parser.ParseMapKey(key)
if err != nil {
return nil, err
}
newKey, _, err = generateUniqueKey(g, newKey)
if err != nil {
return nil, err
}
mk2, err := d2parser.ParseMapKey(newKey)
if err != nil {
return nil, err
}
ak := d2graph.Key(mk.Key)
ak2 := d2graph.Key(mk2.Key)
isCrossScope := strings.Join(ak[:len(ak)-1], ".") != strings.Join(ak2[:len(ak2)-1], ".")
edgeTrimCommon(mk)
obj := g.Root
// Conflict IDs are when a container is moved and the children conflict with something in parent
conflictNewIDs := make(map[*d2graph.Object]string)
conflictOldIDs := make(map[*d2graph.Object]string)
if mk.Key != nil {
var ok bool
obj, ok = g.Root.HasChild(d2graph.Key(mk.Key))
if !ok {
return nil, nil
}
for _, ch := range obj.ChildrenArray {
chMK, err := d2parser.ParseMapKey(ch.AbsID())
if err != nil {
return nil, err
}
ida := d2graph.Key(chMK.Key)
if ida[len(ida)-1] == ida[len(ida)-2] {
continue
}
hoistedAbsID := ch.ID
if obj.Parent != g.Root {
hoistedAbsID = obj.Parent.AbsID() + "." + ch.ID
}
hoistedMK, err := d2parser.ParseMapKey(hoistedAbsID)
if err != nil {
return nil, err
}
if _, ok := g.Root.HasChild(d2graph.Key(hoistedMK.Key)); ok {
newKey, _, err := generateUniqueKey(g, hoistedAbsID)
if err != nil {
return nil, err
}
newMK, err := d2parser.ParseMapKey(newKey)
if err != nil {
return nil, err
}
newAK := d2graph.Key(newMK.Key)
conflictOldIDs[ch] = ch.ID
conflictNewIDs[ch] = newAK[len(newAK)-1]
}
}
}
if len(mk.Edges) > 1 {
return nil, nil
}
if len(mk.Edges) == 1 {
if len(mk.Edges) == 0 {
return nil, errors.New("cannot rename edge to node")
}
if len(mk.Edges) > 1 {
return nil, errors.New("cannot rename edge to edge chain")
}
e, ok := obj.HasEdge(mk)
if !ok {
return nil, nil
}
beforeID := e.AbsID()
tmp := *e
e2 := &tmp
e2.SrcArrow = mk2.Edges[0].SrcArrow == "<"
e2.DstArrow = mk2.Edges[0].DstArrow == ">"
deltas[beforeID] = e2.AbsID()
return deltas, nil
}
beforeObjID := obj.ID
toParent := g.Root
if len(ak2) > 1 {
var ok bool
toParent, ok = g.Root.HasChild(ak2[:len(ak2)-1])
if !ok {
return nil, errors.New("to parent not found")
}
}
id := ak2[len(ak2)-1]
tmpRenames := func() func() {
if isCrossScope {
for _, ch := range obj.ChildrenArray {
ch.Parent = obj.Parent
}
}
prevParent := obj.Parent
obj.Parent = toParent
obj.ID = id
for k, v := range conflictNewIDs {
k.ID = v
}
return func() {
for k, v := range conflictOldIDs {
k.ID = v
}
obj.ID = beforeObjID
obj.Parent = prevParent
if isCrossScope {
for _, ch := range obj.ChildrenArray {
ch.Parent = obj
}
}
}
}
appendNodeDelta := func(ch *d2graph.Object) {
beforeID := ch.AbsID()
revert := tmpRenames()
deltas[beforeID] = ch.AbsID()
revert()
}
appendEdgeDelta := func(ch *d2graph.Object) {
for _, e := range obj.Graph.Edges {
if e.Src == ch || e.Dst == ch {
beforeID := e.AbsID()
revert := tmpRenames()
deltas[beforeID] = e.AbsID()
revert()
}
}
}
var recurse func(ch *d2graph.Object)
recurse = func(ch *d2graph.Object) {
for _, ch := range ch.ChildrenArray {
appendNodeDelta(ch)
appendEdgeDelta(ch)
recurse(ch)
}
}
appendNodeDelta(obj)
appendEdgeDelta(obj)
recurse(obj)
return deltas, nil
}
func DeleteIDDeltas(g *d2graph.Graph, key string) (deltas map[string]string, err error) {
defer xdefer.Errorf(&err, "failed to get deltas for deletion of %#v", key)
deltas = make(map[string]string)
mk, err := d2parser.ParseMapKey(key)
if err != nil {
return nil, err
}
edgeTrimCommon(mk)
obj := g.Root
conflictNewIDs := make(map[*d2graph.Object]string)
conflictOldIDs := make(map[*d2graph.Object]string)
if mk.Key != nil {
var ok bool
obj, ok = g.Root.HasChild(d2graph.Key(mk.Key))
if !ok {
return nil, nil
}
for _, ch := range obj.ChildrenArray {
chMK, err := d2parser.ParseMapKey(ch.AbsID())
if err != nil {
return nil, err
}
ida := d2graph.Key(chMK.Key)
if ida[len(ida)-1] == ida[len(ida)-2] {
continue
}
hoistedAbsID := ch.ID
if obj.Parent != g.Root {
hoistedAbsID = obj.Parent.AbsID() + "." + ch.ID
}
hoistedMK, err := d2parser.ParseMapKey(hoistedAbsID)
if err != nil {
return nil, err
}
if _, ok := g.Root.HasChild(d2graph.Key(hoistedMK.Key)); ok {
newKey, _, err := generateUniqueKey(g, hoistedAbsID)
if err != nil {
return nil, err
}
newMK, err := d2parser.ParseMapKey(newKey)
if err != nil {
return nil, err
}
newAK := d2graph.Key(newMK.Key)
conflictOldIDs[ch] = ch.ID
conflictNewIDs[ch] = newAK[len(newAK)-1]
}
}
}
if len(mk.Edges) > 1 {
return nil, nil
}
if len(mk.Edges) == 1 {
// Anything deleted in an edge key cannot affect deltas
if mk.EdgeKey != nil {
return nil, nil
}
e, ok := obj.HasEdge(mk)
if !ok {
return nil, nil
}
ea, ok := obj.FindEdges(mk)
if !ok {
return nil, nil
}
for _, e2 := range ea {
if e2.Index > e.Index {
beforeID := e2.AbsID()
e2.Index--
deltas[beforeID] = e2.AbsID()
e2.Index++
}
}
return deltas, nil
}
for _, ch := range obj.ChildrenArray {
tmpRenames := func() func() {
prevIDs := make(map[*d2graph.Object]string)
for _, ch := range obj.ChildrenArray {
prevIDs[ch] = ch.ID
ch.Parent = obj.Parent
}
for k, v := range conflictNewIDs {
k.ID = v
}
return func() {
for k, v := range conflictOldIDs {
k.ID = v
}
for _, ch := range obj.ChildrenArray {
ch.Parent = obj
ch.ID = prevIDs[ch]
}
}
}
appendNodeDelta := func(ch2 *d2graph.Object) {
beforeAbsID := ch2.AbsID()
revert := tmpRenames()
deltas[beforeAbsID] = ch2.AbsID()
revert()
}
appendEdgeDelta := func(ch2 *d2graph.Object) {
for _, e := range obj.Graph.Edges {
if e.Src == ch2 || e.Dst == ch2 {
beforeAbsID := e.AbsID()
revert := tmpRenames()
deltas[beforeAbsID] = e.AbsID()
revert()
}
}
}
var recurse func(ch2 *d2graph.Object)
recurse = func(ch2 *d2graph.Object) {
for _, ch2 := range ch2.ChildrenArray {
appendNodeDelta(ch2)
appendEdgeDelta(ch2)
recurse(ch2)
}
}
appendNodeDelta(ch)
appendEdgeDelta(ch)
recurse(ch)
}
return deltas, nil
}
func RenameIDDeltas(g *d2graph.Graph, key, newName string) (deltas map[string]string, err error) {
defer xdefer.Errorf(&err, "failed to get deltas for renaming of %#v to %#v", key, newName)
deltas = make(map[string]string)
mk, err := d2parser.ParseMapKey(key)
if err != nil {
return nil, err
}
edgeTrimCommon(mk)
obj := g.Root
if mk.Key != nil {
var ok bool
obj, ok = g.Root.HasChild(d2graph.Key(mk.Key))
if !ok {
return nil, nil
}
}
if len(mk.Edges) > 1 {
return nil, nil
}
if len(mk.Edges) == 1 {
mk2, err := d2parser.ParseMapKey(newName)
if err != nil {
return nil, err
}
if len(mk.Edges) == 0 {
return nil, errors.New("cannot rename edge to node")
}
if len(mk.Edges) > 1 {
return nil, errors.New("cannot rename edge to edge chain")
}
e, ok := obj.HasEdge(mk)
if !ok {
return nil, nil
}
beforeID := e.AbsID()
tmp := *e
e2 := &tmp
e2.SrcArrow = mk2.Edges[0].SrcArrow == "<"
e2.DstArrow = mk2.Edges[0].DstArrow == ">"
deltas[beforeID] = e2.AbsID()
return deltas, nil
}
if mk.Key.Path[len(mk.Key.Path)-1].Unbox().ScalarString() == newName {
return deltas, nil
}
mk.Key.Path[len(mk.Key.Path)-1].Unbox().SetString(newName)
uniqueKeyStr, _, err := generateUniqueKey(g, strings.Join(d2graph.Key(mk.Key), "."))
if err != nil {
return nil, err
}
uniqueKey, err := d2parser.ParseKey(uniqueKeyStr)
if err != nil {
return nil, err
}
newNameKey := uniqueKey.Path[len(uniqueKey.Path)-1].Unbox().ScalarString()
newNameKey = d2format.Format(d2ast.RawString(newNameKey, true))
beforeObjID := obj.ID
appendNodeDelta := func(ch *d2graph.Object) {
beforeID := ch.AbsID()
obj.ID = newNameKey
deltas[beforeID] = ch.AbsID()
obj.ID = beforeObjID
}
appendEdgeDelta := func(ch *d2graph.Object) {
for _, e := range obj.Graph.Edges {
if e.Src == ch || e.Dst == ch {
beforeID := e.AbsID()
obj.ID = newNameKey
deltas[beforeID] = e.AbsID()
obj.ID = beforeObjID
}
}
}
var recurse func(ch *d2graph.Object)
recurse = func(ch *d2graph.Object) {
for _, ch := range ch.ChildrenArray {
appendNodeDelta(ch)
appendEdgeDelta(ch)
recurse(ch)
}
}
appendNodeDelta(obj)
appendEdgeDelta(obj)
recurse(obj)
return deltas, nil
}
func hasSpace(tag string) bool {
for _, r := range tag {
if unicode.IsSpace(r) {
return true
}
}
return false
}
func getMostNestedRefs(obj *d2graph.Object) []d2graph.Reference {
most := obj.References[0]
for _, ref := range obj.References {
if len(ref.MapKey.Edges) != 0 {
continue
}
scopeKey, err := d2parser.ParseKey(ref.ScopeObj.AbsID())
if err != nil {
scopeKey = &d2ast.KeyPath{}
}
mostKey, err := d2parser.ParseKey(most.ScopeObj.AbsID())
if err != nil {
mostKey = &d2ast.KeyPath{}
}
_, resolvedScopeKey, err := d2graph.ResolveUnderscoreKey(d2graph.Key(scopeKey), obj)
if err != nil {
continue
}
_, resolvedMostKey, err := d2graph.ResolveUnderscoreKey(d2graph.Key(mostKey), obj)
if err != nil {
continue
}
if len(resolvedScopeKey) > len(resolvedMostKey) {
most = ref
}
}
var out []d2graph.Reference
for _, ref := range obj.References {
if len(ref.MapKey.Edges) != 0 {
continue
}
if ref.ScopeObj.AbsID() == most.ScopeObj.AbsID() {
out = append(out, ref)
}
}
return out
}