d2/d2compiler/compile.go
Anmol Sethi e4fac7840f
cli: Improve multiboard output
- Boards with subboards are now selfcontained folders with index.svg/png as
  the root board render.
- Boards that are only containers of other boards are not rendered. For example a
  scenario with no modifications and only steps only has its steps
  rendered.
- Boards with sibling boards of another type are rendered under a
  subdirectory indicating their type to separate them. For example a
  board with layers and scenarios has its layers rendered into subfolder
  layers and scenarios into subfolder scenarios.

cc @berniexie see BoardContainer field on d2target.Board for the field
you were looking for to skip renders for PDFs too.
2023-02-27 13:50:03 -08:00

857 lines
23 KiB
Go

package d2compiler
import (
"fmt"
"io"
"net/url"
"strconv"
"strings"
"oss.terrastruct.com/util-go/go2"
"oss.terrastruct.com/d2/d2ast"
"oss.terrastruct.com/d2/d2format"
"oss.terrastruct.com/d2/d2graph"
"oss.terrastruct.com/d2/d2ir"
"oss.terrastruct.com/d2/d2parser"
"oss.terrastruct.com/d2/d2target"
)
type CompileOptions struct {
UTF16 bool
}
func Compile(path string, r io.RuneReader, opts *CompileOptions) (*d2graph.Graph, error) {
if opts == nil {
opts = &CompileOptions{}
}
ast, err := d2parser.Parse(path, r, &d2parser.ParseOptions{
UTF16: opts.UTF16,
})
if err != nil {
return nil, err
}
ir, err := d2ir.Compile(ast)
if err != nil {
return nil, err
}
g, err := compileIR(ast, ir)
if err != nil {
return nil, err
}
g.SortObjectsByAST()
g.SortEdgesByAST()
return g, nil
}
func compileIR(ast *d2ast.Map, m *d2ir.Map) (*d2graph.Graph, error) {
c := &compiler{}
g := d2graph.NewGraph()
g.AST = ast
c.compileBoard(g, m)
if len(c.err.Errors) > 0 {
return nil, c.err
}
return g, nil
}
func (c *compiler) compileBoard(g *d2graph.Graph, ir *d2ir.Map) *d2graph.Graph {
ir = ir.Copy(nil).(*d2ir.Map)
// c.preprocessSeqDiagrams(ir)
c.compileMap(g.Root, ir)
if len(c.err.Errors) == 0 {
c.validateKeys(g.Root, ir)
}
c.validateNear(g)
c.compileBoardsField(g, ir, "layers")
c.compileBoardsField(g, ir, "scenarios")
c.compileBoardsField(g, ir, "steps")
if d2ir.ParentMap(ir).CopyBase(nil).Equal(ir.CopyBase(nil)) {
if len(g.Layers) > 0 || len(g.Scenarios) > 0 || len(g.Steps) > 0 {
g.BoardContainer = true
}
}
return g
}
func (c *compiler) compileBoardsField(g *d2graph.Graph, ir *d2ir.Map, fieldName string) {
layers := ir.GetField(fieldName)
if layers.Map() == nil {
return
}
for _, f := range layers.Map().Fields {
if f.Map() == nil {
continue
}
if g.GetBoard(f.Name) != nil {
c.errorf(f.References[0].AST(), "board name %v already used by another board", f.Name)
continue
}
g2 := d2graph.NewGraph()
g2.AST = g.AST
c.compileBoard(g2, f.Map())
g2.Name = f.Name
switch fieldName {
case "layers":
g.Layers = append(g.Layers, g2)
case "scenarios":
g.Scenarios = append(g.Scenarios, g2)
case "steps":
g.Steps = append(g.Steps, g2)
}
}
}
type compiler struct {
inEdgeGroup bool
err d2parser.ParseError
}
func (c *compiler) errorf(n d2ast.Node, f string, v ...interface{}) {
c.err.Errors = append(c.err.Errors, d2parser.Errorf(n, f, v...).(d2ast.Error))
}
func (c *compiler) compileMap(obj *d2graph.Object, m *d2ir.Map) {
shape := m.GetField("shape")
if shape != nil {
c.compileField(obj, shape)
}
for _, f := range m.Fields {
if f.Name == "shape" {
continue
}
if _, ok := d2graph.BoardKeywords[f.Name]; ok {
continue
}
c.compileField(obj, f)
}
switch obj.Attributes.Shape.Value {
case d2target.ShapeClass:
c.compileClass(obj)
case d2target.ShapeSQLTable:
c.compileSQLTable(obj)
}
for _, e := range m.Edges {
c.compileEdge(obj, e)
}
}
func (c *compiler) compileField(obj *d2graph.Object, f *d2ir.Field) {
keyword := strings.ToLower(f.Name)
_, isStyleReserved := d2graph.StyleKeywords[keyword]
if isStyleReserved {
c.errorf(f.LastRef().AST(), "%v must be style.%v", f.Name, f.Name)
return
}
_, isReserved := d2graph.SimpleReservedKeywords[keyword]
if isReserved {
c.compileReserved(obj.Attributes, f)
return
} else if f.Name == "style" {
if f.Map() == nil {
return
}
c.compileStyle(obj.Attributes, f.Map())
if obj.Attributes.Style.Animated != nil {
c.errorf(obj.Attributes.Style.Animated.MapKey, `key "animated" can only be applied to edges`)
}
return
}
if obj.Parent != nil {
if obj.Parent.Attributes.Shape.Value == d2target.ShapeSQLTable {
c.errorf(f.LastRef().AST(), "sql_table columns cannot have children")
return
}
if obj.Parent.Attributes.Shape.Value == d2target.ShapeClass {
c.errorf(f.LastRef().AST(), "class fields cannot have children")
return
}
}
obj = obj.EnsureChild(d2graphIDA([]string{f.Name}))
if f.Primary() != nil {
c.compileLabel(obj.Attributes, f)
}
if f.Map() != nil {
c.compileMap(obj, f.Map())
}
if obj.Attributes.Label.MapKey == nil {
obj.Attributes.Label.MapKey = f.LastPrimaryKey()
}
for _, fr := range f.References {
if fr.Primary() {
if fr.Context.Key.Value.Map != nil {
obj.Map = fr.Context.Key.Value.Map
}
}
scopeObjIDA := d2ir.IDA(fr.Context.ScopeMap)
scopeObj := obj.Graph.Root.EnsureChildIDVal(scopeObjIDA)
obj.References = append(obj.References, d2graph.Reference{
Key: fr.KeyPath,
KeyPathIndex: fr.KeyPathIndex(),
MapKey: fr.Context.Key,
MapKeyEdgeIndex: fr.Context.EdgeIndex(),
Scope: fr.Context.Scope,
ScopeObj: scopeObj,
})
}
}
func (c *compiler) compileLabel(attrs *d2graph.Attributes, f d2ir.Node) {
scalar := f.Primary().Value
switch scalar := scalar.(type) {
case *d2ast.Null:
// TODO: Delete instaed.
attrs.Label.Value = scalar.ScalarString()
case *d2ast.BlockString:
attrs.Language = scalar.Tag
fullTag, ok := ShortToFullLanguageAliases[scalar.Tag]
if ok {
attrs.Language = fullTag
}
if attrs.Language == "markdown" || attrs.Language == "latex" {
attrs.Shape.Value = d2target.ShapeText
} else {
attrs.Shape.Value = d2target.ShapeCode
}
attrs.Label.Value = scalar.ScalarString()
default:
attrs.Label.Value = scalar.ScalarString()
}
attrs.Label.MapKey = f.LastPrimaryKey()
}
func (c *compiler) compileReserved(attrs *d2graph.Attributes, f *d2ir.Field) {
if f.Primary() == nil {
if f.Composite != nil {
c.errorf(f.LastPrimaryKey(), "reserved field %v does not accept composite", f.Name)
}
return
}
scalar := f.Primary().Value
switch f.Name {
case "label":
c.compileLabel(attrs, f)
case "shape":
in := d2target.IsShape(scalar.ScalarString())
_, isArrowhead := d2target.Arrowheads[scalar.ScalarString()]
if !in && !isArrowhead {
c.errorf(scalar, "unknown shape %q", scalar.ScalarString())
return
}
attrs.Shape.Value = scalar.ScalarString()
if attrs.Shape.Value == d2target.ShapeCode {
// Explicit code shape is plaintext.
attrs.Language = d2target.ShapeText
}
attrs.Shape.MapKey = f.LastPrimaryKey()
case "icon":
iconURL, err := url.Parse(scalar.ScalarString())
if err != nil {
c.errorf(scalar, "bad icon url %#v: %s", scalar.ScalarString(), err)
return
}
attrs.Icon = iconURL
case "near":
nearKey, err := d2parser.ParseKey(scalar.ScalarString())
if err != nil {
c.errorf(scalar, "bad near key %#v: %s", scalar.ScalarString(), err)
return
}
nearKey.Range = scalar.GetRange()
attrs.NearKey = nearKey
case "tooltip":
attrs.Tooltip = &d2graph.Scalar{}
attrs.Tooltip.Value = scalar.ScalarString()
attrs.Tooltip.MapKey = f.LastPrimaryKey()
case "width":
_, err := strconv.Atoi(scalar.ScalarString())
if err != nil {
c.errorf(scalar, "non-integer width %#v: %s", scalar.ScalarString(), err)
return
}
attrs.Width = &d2graph.Scalar{}
attrs.Width.Value = scalar.ScalarString()
attrs.Width.MapKey = f.LastPrimaryKey()
case "height":
_, err := strconv.Atoi(scalar.ScalarString())
if err != nil {
c.errorf(scalar, "non-integer height %#v: %s", scalar.ScalarString(), err)
return
}
attrs.Height = &d2graph.Scalar{}
attrs.Height.Value = scalar.ScalarString()
attrs.Height.MapKey = f.LastPrimaryKey()
case "top":
v, err := strconv.Atoi(scalar.ScalarString())
if err != nil {
c.errorf(scalar, "non-integer top %#v: %s", scalar.ScalarString(), err)
return
}
if v < 0 {
c.errorf(scalar, "top must be a non-negative integer: %#v", scalar.ScalarString())
return
}
attrs.Top = &d2graph.Scalar{}
attrs.Top.Value = scalar.ScalarString()
attrs.Top.MapKey = f.LastPrimaryKey()
case "left":
v, err := strconv.Atoi(scalar.ScalarString())
if err != nil {
c.errorf(scalar, "non-integer left %#v: %s", scalar.ScalarString(), err)
return
}
if v < 0 {
c.errorf(scalar, "left must be a non-negative integer: %#v", scalar.ScalarString())
return
}
attrs.Left = &d2graph.Scalar{}
attrs.Left.Value = scalar.ScalarString()
attrs.Left.MapKey = f.LastPrimaryKey()
case "link":
attrs.Link = &d2graph.Scalar{}
attrs.Link.Value = scalar.ScalarString()
attrs.Link.MapKey = f.LastPrimaryKey()
case "direction":
dirs := []string{"up", "down", "right", "left"}
if !go2.Contains(dirs, scalar.ScalarString()) {
c.errorf(scalar, `direction must be one of %v, got %q`, strings.Join(dirs, ", "), scalar.ScalarString())
return
}
attrs.Direction.Value = scalar.ScalarString()
attrs.Direction.MapKey = f.LastPrimaryKey()
case "constraint":
if _, ok := scalar.(d2ast.String); !ok {
c.errorf(f.LastPrimaryKey(), "constraint value must be a string")
return
}
attrs.Constraint.Value = scalar.ScalarString()
attrs.Constraint.MapKey = f.LastPrimaryKey()
}
}
func (c *compiler) compileStyle(attrs *d2graph.Attributes, m *d2ir.Map) {
for _, f := range m.Fields {
c.compileStyleField(attrs, f)
}
}
func (c *compiler) compileStyleField(attrs *d2graph.Attributes, f *d2ir.Field) {
if f.Primary() == nil {
return
}
compileStyleFieldInit(attrs, f)
scalar := f.Primary().Value
err := attrs.Style.Apply(f.Name, scalar.ScalarString())
if err != nil {
c.errorf(scalar, err.Error())
return
}
}
func compileStyleFieldInit(attrs *d2graph.Attributes, f *d2ir.Field) {
switch f.Name {
case "opacity":
attrs.Style.Opacity = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "stroke":
attrs.Style.Stroke = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "fill":
attrs.Style.Fill = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "stroke-width":
attrs.Style.StrokeWidth = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "stroke-dash":
attrs.Style.StrokeDash = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "border-radius":
attrs.Style.BorderRadius = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "shadow":
attrs.Style.Shadow = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "3d":
attrs.Style.ThreeDee = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "multiple":
attrs.Style.Multiple = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "font":
attrs.Style.Font = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "font-size":
attrs.Style.FontSize = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "font-color":
attrs.Style.FontColor = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "animated":
attrs.Style.Animated = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "bold":
attrs.Style.Bold = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "italic":
attrs.Style.Italic = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "underline":
attrs.Style.Underline = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "filled":
attrs.Style.Filled = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "width":
attrs.Width = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "height":
attrs.Height = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "top":
attrs.Top = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "left":
attrs.Left = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
case "double-border":
attrs.Style.DoubleBorder = &d2graph.Scalar{MapKey: f.LastPrimaryKey()}
}
}
func (c *compiler) compileEdge(obj *d2graph.Object, e *d2ir.Edge) {
edge, err := obj.Connect(d2graphIDA(e.ID.SrcPath), d2graphIDA(e.ID.DstPath), e.ID.SrcArrow, e.ID.DstArrow, "")
if err != nil {
c.errorf(e.References[0].AST(), err.Error())
return
}
if e.Primary() != nil {
c.compileLabel(edge.Attributes, e)
}
if e.Map() != nil {
for _, f := range e.Map().Fields {
_, ok := d2graph.ReservedKeywords[f.Name]
if !ok {
c.errorf(f.References[0].AST(), `edge map keys must be reserved keywords`)
continue
}
c.compileEdgeField(edge, f)
}
}
edge.Attributes.Label.MapKey = e.LastPrimaryKey()
for _, er := range e.References {
scopeObjIDA := d2ir.IDA(er.Context.ScopeMap)
scopeObj := edge.Src.Graph.Root.EnsureChildIDVal(scopeObjIDA)
edge.References = append(edge.References, d2graph.EdgeReference{
Edge: er.Context.Edge,
MapKey: er.Context.Key,
MapKeyEdgeIndex: er.Context.EdgeIndex(),
Scope: er.Context.Scope,
ScopeObj: scopeObj,
})
}
}
func (c *compiler) compileEdgeField(edge *d2graph.Edge, f *d2ir.Field) {
keyword := strings.ToLower(f.Name)
_, isReserved := d2graph.SimpleReservedKeywords[keyword]
if isReserved {
c.compileReserved(edge.Attributes, f)
return
} else if f.Name == "style" {
if f.Map() == nil {
return
}
c.compileStyle(edge.Attributes, f.Map())
return
}
if f.Name == "source-arrowhead" || f.Name == "target-arrowhead" {
if f.Map() != nil {
c.compileArrowheads(edge, f)
}
}
}
func (c *compiler) compileArrowheads(edge *d2graph.Edge, f *d2ir.Field) {
var attrs *d2graph.Attributes
if f.Name == "source-arrowhead" {
edge.SrcArrowhead = &d2graph.Attributes{}
attrs = edge.SrcArrowhead
} else {
edge.DstArrowhead = &d2graph.Attributes{}
attrs = edge.DstArrowhead
}
if f.Primary() != nil {
c.compileLabel(attrs, f)
}
for _, f2 := range f.Map().Fields {
keyword := strings.ToLower(f2.Name)
_, isReserved := d2graph.SimpleReservedKeywords[keyword]
if isReserved {
c.compileReserved(attrs, f2)
continue
} else if f2.Name == "style" {
if f2.Map() == nil {
continue
}
c.compileStyle(attrs, f2.Map())
continue
} else {
c.errorf(f2.LastRef().AST(), `source-arrowhead/target-arrowhead map keys must be reserved keywords`)
continue
}
}
}
// TODO add more, e.g. C, bash
var ShortToFullLanguageAliases = map[string]string{
"md": "markdown",
"tex": "latex",
"js": "javascript",
"go": "golang",
"py": "python",
"rb": "ruby",
"ts": "typescript",
}
var FullToShortLanguageAliases map[string]string
func (c *compiler) compileClass(obj *d2graph.Object) {
obj.Class = &d2target.Class{}
for _, f := range obj.ChildrenArray {
visiblity := "public"
name := f.IDVal
// See https://www.uml-diagrams.org/visibility.html
if name != "" {
switch name[0] {
case '+':
name = name[1:]
case '-':
visiblity = "private"
name = name[1:]
case '#':
visiblity = "protected"
name = name[1:]
}
}
if !strings.Contains(f.IDVal, "(") {
typ := f.Attributes.Label.Value
if typ == f.IDVal {
typ = ""
}
obj.Class.Fields = append(obj.Class.Fields, d2target.ClassField{
Name: name,
Type: typ,
Visibility: visiblity,
})
} else {
// TODO: Not great, AST should easily allow specifying alternate primary field
// as an explicit label should change the name.
returnType := f.Attributes.Label.Value
if returnType == f.IDVal {
returnType = "void"
}
obj.Class.Methods = append(obj.Class.Methods, d2target.ClassMethod{
Name: name,
Return: returnType,
Visibility: visiblity,
})
}
}
for _, ch := range obj.ChildrenArray {
for i := 0; i < len(obj.Graph.Objects); i++ {
if obj.Graph.Objects[i] == ch {
obj.Graph.Objects = append(obj.Graph.Objects[:i], obj.Graph.Objects[i+1:]...)
i--
}
}
}
obj.Children = nil
obj.ChildrenArray = nil
}
func (c *compiler) compileSQLTable(obj *d2graph.Object) {
obj.SQLTable = &d2target.SQLTable{}
for _, col := range obj.ChildrenArray {
typ := col.Attributes.Label.Value
if typ == col.IDVal {
// Not great, AST should easily allow specifying alternate primary field
// as an explicit label should change the name.
typ = ""
}
d2Col := d2target.SQLColumn{
Name: d2target.Text{Label: col.IDVal},
Type: d2target.Text{Label: typ},
}
if col.Attributes.Constraint.Value != "" {
d2Col.Constraint = col.Attributes.Constraint.Value
}
obj.SQLTable.Columns = append(obj.SQLTable.Columns, d2Col)
}
for _, ch := range obj.ChildrenArray {
for i := 0; i < len(obj.Graph.Objects); i++ {
if obj.Graph.Objects[i] == ch {
obj.Graph.Objects = append(obj.Graph.Objects[:i], obj.Graph.Objects[i+1:]...)
i--
}
}
}
obj.Children = nil
obj.ChildrenArray = nil
}
func (c *compiler) validateKeys(obj *d2graph.Object, m *d2ir.Map) {
for _, f := range m.Fields {
if _, ok := d2graph.BoardKeywords[f.Name]; ok {
continue
}
c.validateKey(obj, f)
}
}
func (c *compiler) validateKey(obj *d2graph.Object, f *d2ir.Field) {
keyword := strings.ToLower(f.Name)
_, isReserved := d2graph.ReservedKeywords[keyword]
if isReserved {
switch obj.Attributes.Shape.Value {
case d2target.ShapeCircle, d2target.ShapeSquare:
checkEqual := (keyword == "width" && obj.Attributes.Height != nil) || (keyword == "height" && obj.Attributes.Width != nil)
if checkEqual && obj.Attributes.Width.Value != obj.Attributes.Height.Value {
c.errorf(f.LastPrimaryKey(), "width and height must be equal for %s shapes", obj.Attributes.Shape.Value)
}
}
switch f.Name {
case "style":
if obj.Attributes.Style.ThreeDee != nil {
if !strings.EqualFold(obj.Attributes.Shape.Value, d2target.ShapeSquare) && !strings.EqualFold(obj.Attributes.Shape.Value, d2target.ShapeRectangle) && !strings.EqualFold(obj.Attributes.Shape.Value, d2target.ShapeHexagon) {
c.errorf(obj.Attributes.Style.ThreeDee.MapKey, `key "3d" can only be applied to squares, rectangles, and hexagons`)
}
}
if obj.Attributes.Style.DoubleBorder != nil {
if obj.Attributes.Shape.Value != "" && obj.Attributes.Shape.Value != d2target.ShapeSquare && obj.Attributes.Shape.Value != d2target.ShapeRectangle && obj.Attributes.Shape.Value != d2target.ShapeCircle && obj.Attributes.Shape.Value != d2target.ShapeOval {
c.errorf(obj.Attributes.Style.DoubleBorder.MapKey, `key "double-border" can only be applied to squares, rectangles, circles, ovals`)
}
}
case "shape":
if obj.Attributes.Shape.Value == d2target.ShapeImage && obj.Attributes.Icon == nil {
c.errorf(f.LastPrimaryKey(), `image shape must include an "icon" field`)
}
in := d2target.IsShape(obj.Attributes.Shape.Value)
_, arrowheadIn := d2target.Arrowheads[obj.Attributes.Shape.Value]
if !in && arrowheadIn {
c.errorf(f.LastPrimaryKey(), fmt.Sprintf(`invalid shape, can only set "%s" for arrowheads`, obj.Attributes.Shape.Value))
}
}
return
}
if obj.Attributes.Shape.Value == d2target.ShapeImage {
c.errorf(f.LastRef().AST(), "image shapes cannot have children.")
return
}
obj, ok := obj.HasChild([]string{f.Name})
if ok && f.Map() != nil {
c.validateKeys(obj, f.Map())
}
}
func (c *compiler) validateNear(g *d2graph.Graph) {
for _, obj := range g.Objects {
if obj.Attributes.NearKey != nil {
nearObj, isKey := g.Root.HasChild(d2graph.Key(obj.Attributes.NearKey))
_, isConst := d2graph.NearConstants[d2graph.Key(obj.Attributes.NearKey)[0]]
if isKey {
// Doesn't make sense to set near to an ancestor or descendant
nearIsAncestor := false
for curr := obj; curr != nil; curr = curr.Parent {
if curr == nearObj {
nearIsAncestor = true
break
}
}
if nearIsAncestor {
c.errorf(obj.Attributes.NearKey, "near keys cannot be set to an ancestor")
continue
}
nearIsDescendant := false
for curr := nearObj; curr != nil; curr = curr.Parent {
if curr == obj {
nearIsDescendant = true
break
}
}
if nearIsDescendant {
c.errorf(obj.Attributes.NearKey, "near keys cannot be set to an descendant")
continue
}
if nearObj.OuterSequenceDiagram() != nil {
c.errorf(obj.Attributes.NearKey, "near keys cannot be set to an object within sequence diagrams")
continue
}
} else if isConst {
is := false
for _, e := range g.Edges {
if e.Src == obj || e.Dst == obj {
is = true
break
}
}
if is {
c.errorf(obj.Attributes.NearKey, "constant near keys cannot be set on connected shapes")
continue
}
if obj.Parent != g.Root {
c.errorf(obj.Attributes.NearKey, "constant near keys can only be set on root level shapes")
continue
}
if len(obj.ChildrenArray) > 0 {
c.errorf(obj.Attributes.NearKey, "constant near keys cannot be set on shapes with children")
continue
}
} else {
c.errorf(obj.Attributes.NearKey, "near key %#v must be the absolute path to a shape or one of the following constants: %s", d2format.Format(obj.Attributes.NearKey), strings.Join(d2graph.NearConstantsArray, ", "))
continue
}
}
}
}
func init() {
FullToShortLanguageAliases = make(map[string]string, len(ShortToFullLanguageAliases))
for k, v := range ShortToFullLanguageAliases {
FullToShortLanguageAliases[v] = k
}
}
func d2graphIDA(irIDA []string) (ida []string) {
for _, el := range irIDA {
n := &d2ast.KeyPath{
Path: []*d2ast.StringBox{d2ast.MakeValueBox(d2ast.RawString(el, true)).StringBox()},
}
ida = append(ida, d2format.Format(n))
}
return ida
}
// Unused for now until shape: edge_group
func (c *compiler) preprocessSeqDiagrams(m *d2ir.Map) {
for _, f := range m.Fields {
if f.Name == "shape" && f.Primary_.Value.ScalarString() == d2target.ShapeSequenceDiagram {
c.preprocessEdgeGroup(m, m)
return
}
if f.Map() != nil {
c.preprocessSeqDiagrams(f.Map())
}
}
}
func (c *compiler) preprocessEdgeGroup(seqDiagram, m *d2ir.Map) {
// Any child of a sequence diagram can be either an actor, edge group or a span.
// 1. Actors are shapes without edges inside them defined at the top level scope of a
// sequence diagram.
// 2. Spans are the children of actors. For our purposes we can ignore them.
// 3. Edge groups are defined as having at least one connection within them and also not
// being connected to anything. All direct children of an edge group are either edge
// groups or top level actors.
// Go through all the fields and hoist actors from edge groups while also processing
// the edge groups recursively.
for _, f := range m.Fields {
if isEdgeGroup(f) {
if f.Map() != nil {
c.preprocessEdgeGroup(seqDiagram, f.Map())
}
} else {
if m == seqDiagram {
// Ignore for root.
continue
}
hoistActor(seqDiagram, f)
}
}
// We need to adjust all edges recursively to point to actual actors instead.
for _, e := range m.Edges {
if isCrossEdgeGroupEdge(m, e) {
c.errorf(e.References[0].AST(), "illegal edge between edge groups")
continue
}
if m == seqDiagram {
// Root edges between actors directly do not require hoisting.
continue
}
srcParent := seqDiagram
for i, el := range e.ID.SrcPath {
f := srcParent.GetField(el)
if !isEdgeGroup(f) {
for j := 0; j < i+1; j++ {
e.ID.SrcPath = append([]string{"_"}, e.ID.SrcPath...)
e.ID.DstPath = append([]string{"_"}, e.ID.DstPath...)
}
break
}
srcParent = f.Map()
}
}
}
func hoistActor(seqDiagram *d2ir.Map, f *d2ir.Field) {
f2 := seqDiagram.GetField(f.Name)
if f2 == nil {
seqDiagram.Fields = append(seqDiagram.Fields, f.Copy(seqDiagram).(*d2ir.Field))
} else {
d2ir.OverlayField(f2, f)
d2ir.ParentMap(f).DeleteField(f.Name)
}
}
func isCrossEdgeGroupEdge(m *d2ir.Map, e *d2ir.Edge) bool {
srcParent := m
for _, el := range e.ID.SrcPath {
f := srcParent.GetField(el)
if f == nil {
// Hoisted already.
break
}
if isEdgeGroup(f) {
return true
}
srcParent = f.Map()
}
dstParent := m
for _, el := range e.ID.DstPath {
f := dstParent.GetField(el)
if f == nil {
// Hoisted already.
break
}
if isEdgeGroup(f) {
return true
}
dstParent = f.Map()
}
return false
}
func isEdgeGroup(n d2ir.Node) bool {
return n.Map().EdgeCountRecursive() > 0
}
func parentSeqDiagram(n d2ir.Node) *d2ir.Map {
for {
m := d2ir.ParentMap(n)
if m == nil {
return nil
}
for _, f := range m.Fields {
if f.Name == "shape" && f.Primary_.Value.ScalarString() == d2target.ShapeSequenceDiagram {
return m
}
}
n = m
}
}