d2/d2layouts/d2cycle/layout.go
Mayank Mohapatra f6c3bdcae6 test 2
2025-02-21 19:23:46 +00:00

373 lines
10 KiB
Go

// package d2cycle
// import (
// "context"
// "math"
// "oss.terrastruct.com/d2/d2graph"
// "oss.terrastruct.com/d2/lib/geo"
// "oss.terrastruct.com/d2/lib/label"
// "oss.terrastruct.com/util-go/go2"
// )
// const (
// MIN_RADIUS = 200
// PADDING = 20
// MIN_SEGMENT_LEN = 10
// ARC_STEPS = 30
// )
// func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
// objects := g.Root.ChildrenArray
// if len(objects) == 0 {
// return nil
// }
// for _, obj := range g.Objects {
// positionLabelsIcons(obj)
// }
// radius := calculateRadius(objects)
// positionObjects(objects, radius)
// for _, edge := range g.Edges {
// createCircularArc(edge)
// }
// return nil
// }
// func calculateRadius(objects []*d2graph.Object) float64 {
// numObjects := float64(len(objects))
// maxSize := 0.0
// for _, obj := range objects {
// size := math.Max(obj.Box.Width, obj.Box.Height)
// maxSize = math.Max(maxSize, size)
// }
// minRadius := (maxSize/2.0 + PADDING) / math.Sin(math.Pi/numObjects)
// return math.Max(minRadius, MIN_RADIUS)
// }
// func positionObjects(objects []*d2graph.Object, radius float64) {
// numObjects := float64(len(objects))
// angleOffset := -math.Pi / 2
// for i, obj := range objects {
// angle := angleOffset + (2*math.Pi*float64(i)/numObjects)
// x := radius * math.Cos(angle)
// y := radius * math.Sin(angle)
// obj.TopLeft = geo.NewPoint(
// x-obj.Box.Width/2,
// y-obj.Box.Height/2,
// )
// }
// }
// func createCircularArc(edge *d2graph.Edge) {
// if edge.Src == nil || edge.Dst == nil {
// return
// }
// srcCenter := edge.Src.Center()
// dstCenter := edge.Dst.Center()
// srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
// dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
// if dstAngle < srcAngle {
// dstAngle += 2 * math.Pi
// }
// arcRadius := math.Hypot(srcCenter.X, srcCenter.Y)
// path := make([]*geo.Point, 0, ARC_STEPS+1)
// for i := 0; i <= ARC_STEPS; i++ {
// t := float64(i) / float64(ARC_STEPS)
// angle := srcAngle + t*(dstAngle-srcAngle)
// x := arcRadius * math.Cos(angle)
// y := arcRadius * math.Sin(angle)
// path = append(path, geo.NewPoint(x, y))
// }
// path[0] = srcCenter
// path[len(path)-1] = dstCenter
// startIndex, newSrc := clampPointOutsideBox(edge.Src.Box, path, 0)
// endIndex, newDst := clampPointOutsideBoxReverse(edge.Dst.Box, path, len(path)-1)
// path[0] = newSrc
// path[len(path)-1] = newDst
// edge.Route = path[startIndex : endIndex+1]
// edge.IsCurve = true
// }
// func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *geo.Point) {
// if startIdx >= len(path)-1 {
// return startIdx, path[startIdx]
// }
// if !boxContains(box, path[startIdx]) {
// return startIdx, path[startIdx]
// }
// for i := startIdx + 1; i < len(path); i++ {
// if boxContains(box, path[i]) {
// continue
// }
// seg := geo.NewSegment(path[i-1], path[i])
// inters := boxIntersections(box, *seg)
// if len(inters) > 0 {
// return i, inters[0]
// }
// return i, path[i]
// }
// last := len(path) - 1
// return last, path[last]
// }
// func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (int, *geo.Point) {
// if endIdx <= 0 {
// return endIdx, path[endIdx]
// }
// if !boxContains(box, path[endIdx]) {
// return endIdx, path[endIdx]
// }
// for j := endIdx - 1; j >= 0; j-- {
// if boxContains(box, path[j]) {
// continue
// }
// seg := geo.NewSegment(path[j], path[j+1])
// inters := boxIntersections(box, *seg)
// if len(inters) > 0 {
// return j, inters[0]
// }
// return j, path[j]
// }
// return 0, path[0]
// }
// func boxContains(b *geo.Box, p *geo.Point) bool {
// return p.X >= b.TopLeft.X &&
// p.X <= b.TopLeft.X+b.Width &&
// p.Y >= b.TopLeft.Y &&
// p.Y <= b.TopLeft.Y+b.Height
// }
// func boxIntersections(b *geo.Box, seg geo.Segment) []*geo.Point {
// return b.Intersections(seg)
// }
// func positionLabelsIcons(obj *d2graph.Object) {
// if obj.Icon != nil && obj.IconPosition == nil {
// if len(obj.ChildrenArray) > 0 {
// obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
// if obj.LabelPosition == nil {
// obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
// return
// }
// } else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
// obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
// } else {
// obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
// }
// }
// if obj.HasLabel() && obj.LabelPosition == nil {
// if len(obj.ChildrenArray) > 0 {
// obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
// } else if obj.HasOutsideBottomLabel() {
// obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
// } else if obj.Icon != nil {
// obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
// } else {
// obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
// }
// if float64(obj.LabelDimensions.Width) > obj.Width ||
// float64(obj.LabelDimensions.Height) > obj.Height {
// if len(obj.ChildrenArray) > 0 {
// obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
// } else {
// obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
// }
// }
// }
// }
package d2cycle
import (
"context"
"math"
"oss.terrastruct.com/d2/d2graph"
"oss.terrastruct.com/d2/lib/geo"
"oss.terrastruct.com/d2/lib/label"
"oss.terrastruct.com/util-go/go2"
)
const (
MIN_RADIUS = 200
PADDING = 20
MIN_SEGMENT_LEN = 10
ARC_STEPS = 30
)
func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
objects := g.Root.ChildrenArray
if len(objects) == 0 {
return nil
}
for _, obj := range g.Objects {
positionLabelsIcons(obj)
}
radius := calculateRadius(objects)
positionObjects(objects, radius)
for _, edge := range g.Edges {
createCircularArc(edge)
}
return nil
}
func calculateRadius(objects []*d2graph.Object) float64 {
numObjects := float64(len(objects))
maxSize := 0.0
for _, obj := range objects {
size := math.Max(obj.Box.Width, obj.Box.Height)
maxSize = math.Max(maxSize, size)
}
minRadius := (maxSize/2.0 + PADDING) / math.Sin(math.Pi/numObjects)
return math.Max(minRadius, MIN_RADIUS)
}
func positionObjects(objects []*d2graph.Object, radius float64) {
numObjects := float64(len(objects))
angleOffset := -math.Pi / 2
for i, obj := range objects {
angle := angleOffset + (2*math.Pi*float64(i)/numObjects)
x := radius * math.Cos(angle)
y := radius * math.Sin(angle)
obj.TopLeft = geo.NewPoint(
x-obj.Box.Width/2,
y-obj.Box.Height/2,
)
}
}
// createCircularArc computes an arc along a circle from the source to destination,
// then computes the exact intersection points between a ray from the object's center
// and its bounding box. This ensures that the arrow precisely touches the boundary.
func createCircularArc(edge *d2graph.Edge) {
if edge.Src == nil || edge.Dst == nil {
return
}
srcCenter := edge.Src.Center()
dstCenter := edge.Dst.Center()
srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
if dstAngle < srcAngle {
dstAngle += 2 * math.Pi
}
// Here we use the source center's distance as the arc radius.
arcRadius := math.Hypot(srcCenter.X, srcCenter.Y)
// Sample points along the circular arc.
path := make([]*geo.Point, 0, ARC_STEPS+1)
for i := 0; i <= ARC_STEPS; i++ {
t := float64(i) / float64(ARC_STEPS)
angle := srcAngle + t*(dstAngle-srcAngle)
x := arcRadius * math.Cos(angle)
y := arcRadius * math.Sin(angle)
path = append(path, geo.NewPoint(x, y))
}
// Instead of relying on iterative clamping, we compute exact intersection points.
// For the source, the ray is from the center toward the second sample point.
newSrc := rayRectangleIntersection(srcCenter, edge.Src.Box, path[1].X-srcCenter.X, path[1].Y-srcCenter.Y)
// For the destination, the ray is from the center in the direction opposite to the second-to-last sample.
newDst := rayRectangleIntersection(dstCenter, edge.Dst.Box, dstCenter.X-path[len(path)-2].X, dstCenter.Y-path[len(path)-2].Y)
path[0] = newSrc
path[len(path)-1] = newDst
edge.Route = path
edge.IsCurve = true
}
// rayRectangleIntersection computes the exact intersection point of a ray starting at 'center'
// with direction (dx, dy) and the boundary of an axis-aligned rectangle 'box'.
// The rectangle is defined by its TopLeft corner, width, and height.
func rayRectangleIntersection(center *geo.Point, box *geo.Box, dx, dy float64) *geo.Point {
L := box.TopLeft.X
R := box.TopLeft.X + box.Width
T := box.TopLeft.Y
B := box.TopLeft.Y + box.Height
var tX, tY float64
if dx > 0 {
tX = (R - center.X) / dx
} else if dx < 0 {
tX = (L - center.X) / dx
} else {
tX = math.Inf(1)
}
if dy > 0 {
tY = (B - center.Y) / dy
} else if dy < 0 {
tY = (T - center.Y) / dy
} else {
tY = math.Inf(1)
}
t := tX
if tY < t {
t = tY
}
return geo.NewPoint(center.X+dx*t, center.Y+dy*t)
}
func positionLabelsIcons(obj *d2graph.Object) {
if obj.Icon != nil && obj.IconPosition == nil {
if len(obj.ChildrenArray) > 0 {
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
if obj.LabelPosition == nil {
obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
return
}
} else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
} else {
obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
}
if obj.HasLabel() && obj.LabelPosition == nil {
if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else if obj.HasOutsideBottomLabel() {
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
} else if obj.Icon != nil {
obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
} else {
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
if float64(obj.LabelDimensions.Width) > obj.Width ||
float64(obj.LabelDimensions.Height) > obj.Height {
if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else {
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
}
}
}
}