Turn Clojure data structures into SQL
Find a file
Donald Ball 4bdaae39af Convert seq param values to literal sql param lists
This allows seqs to be used as param values, e.g. for IN clauses. It
also converts sets to seqs for the same purpose.

It does not expand the parameter name when this occurs, which will lead
to a mismatch between the *param-names* and *params* collections. It is
not clear how *param-names* are intended to be used, so I have no better
fix to suggest other than repeating a seq's param name the corresponding
number of times into that collection.
2015-04-21 14:28:28 -04:00
resources Add SqlArray type and reader literal support. 2015-04-15 10:29:34 -05:00
src/honeysql Convert seq param values to literal sql param lists 2015-04-21 14:28:28 -04:00
test/honeysql Convert seq param values to literal sql param lists 2015-04-21 14:28:28 -04:00
.gitignore also ignore signed pom 2015-03-15 22:34:59 -07:00
.travis.yml add travis config 2015-03-03 12:01:11 -08:00
CHANGES.md Convert seq param values to literal sql param lists 2015-04-21 14:28:28 -04:00
project.clj begin 0.5.3 development cycle 2015-03-31 10:44:43 -07:00
README.md Document locking selects 2015-04-19 21:57:44 -04:00

Honey SQL

SQL as Clojure data structures. Build queries programmatically -- even at runtime -- without having to bash strings together.

Build

Build Status Dependencies Status

Leiningen Coordinates

Clojars Project

Usage

(require '[honeysql.core :as sql]
         '[honeysql.helpers :refer :all])

Everything is built on top of maps representing SQL queries:

(def sqlmap {:select [:a :b :c]
             :from [:foo]
             :where [:= :f.a "baz"]})

format turns maps into clojure.java.jdbc-compatible, parameterized SQL:

(sql/format sqlmap)
=> ["SELECT a, b, c FROM foo WHERE (f.a = ?)" "baz"]

You can build up SQL maps yourself or use helper functions. build is the Swiss Army Knife helper. It lets you leave out brackets here and there:

(sql/build :select :*
           :from :foo
           :where [:= :f.a "baz"])
=> {:where [:= :f.a "baz"], :from [:foo], :select [:*]}

You can provide a "base" map as the first argument to build:

(sql/build sqlmap :offset 10 :limit 10)
=> {:limit 10, :offset 10, :select [:a :b :c], :where [:= :f.a "baz"], :from [:foo]}

There are also functions for each clause type in the honeysql.helpers namespace:

(-> (select :a :b :c)
    (from :foo)
    (where [:= :f.a "baz"]))

Order doesn't matter:

(= (-> (select :*) (from :foo))
   (-> (from :foo) (select :*)))
=> true

When using the vanilla helper functions, new clauses will replace old clauses:

(-> sqlmap (select :*))
=> {:from [:foo], :where [:= :f.a "baz"], :select (:*)}

To add to clauses instead of replacing them, use merge-select, merge-where, etc.:

(-> sqlmap
    (merge-select :d :e)
    (merge-where [:> :b 10])
    sql/format)
=> ["SELECT a, b, c, d, e FROM foo WHERE (f.a = ? AND b > 10)" "baz"]

where will combine multiple clauses together using and:

(-> (select :*)
    (from :foo)
    (where [:= :a 1] [:< :b 100])
    sql/format)
=> ["SELECT * FROM foo WHERE (a = 1 AND b < 100)"]

Inserts are supported in two patterns. In the first pattern, you must explicitly specify the columns to insert, then provide a collection of rows, each a collection of column values:

(-> (insert-into :properties)
    (columns :name :surname :age)
    (values
     [["Jon" "Smith" 34]
      ["Andrew" "Cooper" 12]
      ["Jane" "Daniels" 56]])
    sql/format)
=> ["INSERT INTO properties (name, surname, age)
     VALUES (?, ?, 34), (?, ?, 12), (?, ?, 56)"
     "Jon" "Smith" "Andrew" "Cooper" "Jane" "Daniels"]

Alternately, you can simply specify the values as maps; the first map defines the columns to insert, and the remaining maps must have the same set of keys and values:

(-> (insert-into :properties)
    (values [{:name "John" :surname "Smith" :age 34}
             {:name "Andrew" :surname "Cooper" :age 12}
             {:name "Jane" :surname "Daniels" :age 56}])
    sql/format)
=> ["INSERT INTO properties (age, name, surname) 
     VALUES (34, ?, ?), (12, ?, ?), (56, ?, ?)" 
    "John" "Smith" 
    "Andrew" "Cooper" 
    "Jane" "Daniels"]

The column values do not have to be literals, they can be nested queries:

(let [user-id 12345
      role-name "user"]
  (-> (insert-into :user_profile_to_role)
      (values [{:user_profile_id user-id
                :role_id         (-> (select :id)
                                     (from :role)
                                     (where [:= :name role-name]))}])
      sql/format))

=> ["INSERT INTO user_profile_to_role (user_profile_id, role_id) 
     VALUES (12345, (SELECT id FROM role WHERE name = ?))" 
    "user"]

Updates are possible too (note the double S in sset to avoid clashing with clojure.core/set):

(-> (update :films)
    (sset {:kind "dramatic"
           :watched true})
    (where [:= :kind "drama"])
    sql/format)
=> ["UPDATE films SET watched = TRUE, kind = ? WHERE kind = ?" "dramatic" "drama"]

Deletes look as you would expect:

(-> (delete-from :films)
    (where [:<> :kind "musical"])
    sql/format)
=> ["DELETE FROM films WHERE kind <> ?" "musical"]

Queries can be nested:

(-> (select :*)
    (from :foo)
    (where [:in :foo.a (-> (select :a) (from :bar))])
    sql/format)
=> ["SELECT * FROM foo WHERE (foo.a IN (SELECT a FROM bar))"]

Keywords that begin with % are interpreted as SQL function calls:

(-> (select :%count.*) (from :foo) sql/format)
=> ["SELECT count(*) FROM foo"]
(-> (select :%max.id) (from :foo) sql/format)
=> ["SELECT max(id) FROM foo"]

Keywords that begin with ? are interpreted as bindable parameters:

(-> (select :id)
    (from :foo)
    (where [:= :a :?baz])
    (sql/format :params {:baz "BAZ"}))
=> ["SELECT id FROM foo WHERE a = ?" "BAZ"]

There are helper functions and data literals for SQL function calls, field qualifiers, raw SQL fragments, and named input parameters:

(-> (select (sql/call :foo :bar) (sql/qualify :foo :a) (sql/raw "@var := foo.bar"))
    (from :foo)
    (where [:= :a (sql/param :baz)]))
=> {:where [:= :a #sql/param :baz], :from (:foo), :select (#sql/call [:foo :bar] :foo.a #sql/raw "@var := foo.bar")}

(sql/format *1 :params {:baz "BAZ"})
=> ["SELECT FOO(bar), foo.a, @var := foo.bar FROM foo WHERE a = ?" "BAZ"]

To quote identifiers, pass the :quoting keyword option to format. Valid options are :ansi (PostgreSQL), :mysql, or :sqlserver:

(-> (select :foo.a)
    (from :foo)
    (where [:= :foo.a "baz"])
    (sql/format :quoting :mysql))
=> ["SELECT `foo`.`a` FROM `foo` WHERE `foo`.`a` = ?" "baz"]

To issue a locking select, add a :lock to the query or use the lock helper. The lock value must be a map with a :mode value. The built-in modes are the standard :update (FOR UPDATE) or the vendor-specific :mysql-share (LOCK IN SHARE MODE) or :postresql-share (FOR SHARE). The lock map may also provide a :wait value, which if false will append the NOWAIT parameter, supported by PostgreSQL.

(-> (select :foo.a)
    (from :foo)
    (where [:= foo.a "baz"])
    (lock {:mode :update})
    (sql/format))
=> ["SELECT foo.a FROM foo WHERE foo.a = ? FOR UPDATE" "baz"]

To support novel lock modes, implement the format-lock-clause multimethod.

Here's a big, complicated query. Note that Honey SQL makes no attempt to verify that your queries make any sense. It merely renders surface syntax.

(-> (select :f.* :b.baz :c.quux [:b.bla "bla-bla"]
            (sql/call :now) (sql/raw "@x := 10"))
    (modifiers :distinct)
    (from [:foo :f] [:baz :b])
    (join :draq [:= :f.b :draq.x])
    (left-join [:clod :c] [:= :f.a :c.d])
    (right-join :bock [:= :bock.z :c.e])
    (where [:or
             [:and [:= :f.a "bort"] [:not= :b.baz (sql/param :param1)]]
             [:< 1 2 3]
             [:in :f.e [1 (sql/param :param2) 3]]
             [:between :f.e 10 20]])
    (group :f.a)
    (having [:< 0 :f.e])
    (order-by [:b.baz :desc] :c.quux [:f.a :nulls-first])
    (limit 50)
    (offset 10))
=> {:select [:f.* :b.baz :c.quux [:b.bla "bla-bla"]
             (sql/call :now) (sql/raw "@x := 10")]
    :modifiers [:distinct]
    :from [[:foo :f] [:baz :b]]
    :join [:draq [:= :f.b :draq.x]]
    :left-join [[:clod :c] [:= :f.a :c.d]]
    :right-join [:bock [:= :bock.z :c.e]]
    :where [:or
             [:and [:= :f.a "bort"] [:not= :b.baz (sql/param :param1)]]
             [:< 1 2 3]
             [:in :f.e [1 (sql/param :param2) 3]]
             [:between :f.e 10 20]]
    :group-by [:f.a]
    :having [:< 0 :f.e]
    :order-by [[:b.baz :desc] :c.quux [:f.a :nulls-first]
    :limit 50
    :offset 10}

(sql/format *1 {:param1 "gabba" :param2 2})
=> ["SELECT DISTINCT f.*, b.baz, c.quux, b.bla AS \"bla-bla\", NOW(), @x := 10
     FROM foo AS f, baz AS b
     INNER JOIN draq ON f.b = draq.x
     LEFT JOIN clod AS c ON f.a = c.d
     RIGHT JOIN bock ON bock.z = c.e
     WHERE ((f.a = ? AND b.baz <> ?)
           OR (1 < 2 AND 2 < 3)
           OR (f.e IN (1, ?, 3))
           OR f.e BETWEEN 10 AND 20)
     GROUP BY f.a
     HAVING 0 < f.e
     ORDER BY b.baz DESC, c.quux, f.a NULLS FIRST
     LIMIT 50
     OFFSET 10 "
     "bort" "gabba" 2]

;; Printable and readable
(= *2 (read-string (pr-str *2)))
=> true

Extensibility

You can define your own function handlers for use in where:

(require '[honeysql.format :as fmt])

(defmethod fmt/fn-handler "betwixt" [_ field lower upper]
  (str (fmt/to-sql field) " BETWIXT "
       (fmt/to-sql lower) " AND " (fmt/to-sql upper)))

(-> (select :a) (where [:betwixt :a 1 10]) sql/format)
=> ["SELECT a WHERE a BETWIXT 1 AND 10"]

You can also define your own clauses:


;; Takes a MapEntry of the operator & clause data, plus the entire SQL map
(defmethod fmt/format-clause :foobar [[op v] sqlmap]
  (str "FOOBAR " (fmt/to-sql v)))

(sql/format {:select [:a :b] :foobar :baz})
=> ["SELECT a, b FOOBAR baz"]

(require '[honeysql.helpers :refer [defhelper]])

;; Defines a helper function, and allows 'build' to recognize your clause
(defhelper foobar [m args]
  (assoc m :foobar (first args)))

(-> (select :a :b) (foobar :baz) sql/format)
=> ["SELECT a, b FOOBAR baz"]

If you do implement a clause or function handler, consider submitting a pull request so others can use it, too.

TODO

  • Create table, etc.

License

Copyright © 2012 Justin Kramer

Distributed under the Eclipse Public License, the same as Clojure.