add whisper support for audio transcript. only trigger when have llm_client and openai

This commit is contained in:
Ji Zhang 2025-02-11 17:26:40 -08:00
parent 97eeed5f32
commit 8301427ab5
2 changed files with 46 additions and 12 deletions

View file

@ -1,7 +1,8 @@
import os
import tempfile
from typing import Union
from ._base import DocumentConverter, DocumentConverterResult
from ._wav_converter import WavConverter
from ._wav_converter import WavConverter, IS_WHISPER_CAPABLE
from warnings import resetwarnings, catch_warnings
# Optional Transcription support
@ -25,7 +26,8 @@ finally:
class Mp3Converter(WavConverter):
"""
Converts MP3 files to markdown via extraction of metadata (if `exiftool` is installed), and speech transcription (if `speech_recognition` AND `pydub` are installed).
Converts MP3 files to markdown via extraction of metadata (if `exiftool` is installed),
and speech transcription (if `speech_recognition` AND `pydub` are installed, or OpenAI Whisper is configured).
"""
def __init__(
@ -59,18 +61,27 @@ class Mp3Converter(WavConverter):
if f in metadata:
md_content += f"{f}: {metadata[f]}\n"
# Transcribe
if IS_AUDIO_TRANSCRIPTION_CAPABLE:
# Try transcribing with Whisper first if OpenAI client is available
llm_client = kwargs.get("llm_client")
if IS_WHISPER_CAPABLE and llm_client is not None:
try:
transcript = self._transcribe_with_whisper(local_path, llm_client)
if transcript:
md_content += "\n\n### Audio Transcript (Whisper):\n" + transcript
except Exception as e:
md_content += f"\n\n### Audio Transcript:\nError transcribing with Whisper: {str(e)}"
# Fall back to speech_recognition if Whisper failed or isn't available
elif IS_AUDIO_TRANSCRIPTION_CAPABLE:
handle, temp_path = tempfile.mkstemp(suffix=".wav")
os.close(handle)
try:
sound = pydub.AudioSegment.from_mp3(local_path)
sound.export(temp_path, format="wav")
_args = dict()
_args.update(kwargs)
_args["file_extension"] = ".wav"
try:
transcript = super()._transcribe_audio(temp_path).strip()
md_content += "\n\n### Audio Transcript:\n" + (
@ -78,11 +89,9 @@ class Mp3Converter(WavConverter):
)
except Exception:
md_content += "\n\n### Audio Transcript:\nError. Could not transcribe this audio."
finally:
os.unlink(temp_path)
# Return the result
return DocumentConverterResult(
title=None,
text_content=md_content.strip(),

View file

@ -4,17 +4,24 @@ from ._media_converter import MediaConverter
# Optional Transcription support
IS_AUDIO_TRANSCRIPTION_CAPABLE = False
IS_WHISPER_CAPABLE = False
try:
import speech_recognition as sr
IS_AUDIO_TRANSCRIPTION_CAPABLE = True
except ModuleNotFoundError:
pass
try:
from openai import OpenAI
IS_WHISPER_CAPABLE = True
except ModuleNotFoundError:
pass
class WavConverter(MediaConverter):
"""
Converts WAV files to markdown via extraction of metadata (if `exiftool` is installed), and speech transcription (if `speech_recognition` is installed).
Converts WAV files to markdown via extraction of metadata (if `exiftool` is installed),
and speech transcription (if `speech_recognition` is installed or OpenAI Whisper is configured).
"""
def __init__(
@ -48,8 +55,17 @@ class WavConverter(MediaConverter):
if f in metadata:
md_content += f"{f}: {metadata[f]}\n"
# Transcribe
if IS_AUDIO_TRANSCRIPTION_CAPABLE:
# Try transcribing with Whisper first if OpenAI client is available
llm_client = kwargs.get("llm_client")
if IS_WHISPER_CAPABLE and llm_client is not None :
try:
transcript = self._transcribe_with_whisper(local_path, llm_client)
if transcript:
md_content += "\n\n### Audio Transcript (Whisper):\n" + transcript
except Exception as e:
md_content += f"\n\n### Audio Transcript:\nError transcribing with Whisper: {str(e)}"
# Fall back to speech_recognition if Whisper failed or isn't available
elif IS_AUDIO_TRANSCRIPTION_CAPABLE:
try:
transcript = self._transcribe_audio(local_path)
md_content += "\n\n### Audio Transcript:\n" + (
@ -65,6 +81,15 @@ class WavConverter(MediaConverter):
text_content=md_content.strip(),
)
def _transcribe_with_whisper(self, local_path: str, client) -> str:
"""Transcribe audio using OpenAI's Whisper model."""
with open(local_path, "rb") as audio_file:
transcription = client.audio.transcriptions.create(
model="whisper-1",
file=audio_file
)
return transcription.text.strip()
def _transcribe_audio(self, local_path) -> str:
recognizer = sr.Recognizer()
with sr.AudioFile(local_path) as source: