Merge pull request #1 from pathintegral-institute/rong/tech-135-markitup-cleanup

Rong/tech 135 markitup cleanup
This commit is contained in:
rong-xyz 2025-04-22 14:33:09 +08:00 committed by GitHub
commit e729da2b38
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
109 changed files with 1367 additions and 4804 deletions

View file

@ -1,32 +0,0 @@
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
// README at: https://github.com/devcontainers/templates/tree/main/src/docker-existing-dockerfile
{
"name": "Existing Dockerfile",
"build": {
// Sets the run context to one level up instead of the .devcontainer folder.
"context": "..",
// Update the 'dockerFile' property if you aren't using the standard 'Dockerfile' filename.
"dockerfile": "../Dockerfile",
"args": {
"INSTALL_GIT": "true"
}
},
// Features to add to the dev container. More info: https://containers.dev/features.
// "features": {},
"features": {
"ghcr.io/devcontainers-extra/features/hatch:2": {}
},
// Use 'forwardPorts' to make a list of ports inside the container available locally.
// "forwardPorts": [],
// Uncomment the next line to run commands after the container is created.
// "postCreateCommand": "cat /etc/os-release",
// Configure tool-specific properties.
// "customizations": {},
// Uncomment to connect as an existing user other than the container default. More info: https://aka.ms/dev-containers-non-root.
"remoteUser": "root"
}

View file

@ -1,2 +0,0 @@
*
!packages/

2
.gitattributes vendored
View file

@ -1,2 +0,0 @@
packages/markitdown/tests/test_files/** linguist-vendored
packages/markitdown-sample-plugin/tests/test_files/** linguist-vendored

View file

@ -1,6 +0,0 @@
version: 2
updates:
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "weekly"

View file

@ -1,20 +0,0 @@
name: pre-commit
on: [pull_request]
jobs:
pre-commit:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.x"
- name: Install pre-commit
run: |
pip install pre-commit
pre-commit install --install-hooks
- name: Run pre-commit
run: pre-commit run --all-files

View file

@ -1,18 +0,0 @@
name: tests
on: [pull_request]
jobs:
tests:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: |
3.10
3.11
3.12
- name: Install Hatch
run: pipx install hatch
- name: Run tests
run: cd packages/markitdown; hatch test

2
.gitignore vendored
View file

@ -4,7 +4,7 @@
__pycache__/
*.py[cod]
*$py.class
working/
# C extensions
*.so

View file

@ -1,5 +0,0 @@
repos:
- repo: https://github.com/psf/black
rev: 23.7.0 # Use the latest version of Black
hooks:
- id: black

View file

@ -1,9 +0,0 @@
# Microsoft Open Source Code of Conduct
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
Resources:
- [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
- [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
- Contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with questions or concerns

View file

@ -1,33 +0,0 @@
FROM python:3.13-slim-bullseye
ENV DEBIAN_FRONTEND=noninteractive
ENV EXIFTOOL_PATH=/usr/bin/exiftool
ENV FFMPEG_PATH=/usr/bin/ffmpeg
# Runtime dependency
RUN apt-get update && apt-get install -y --no-install-recommends \
ffmpeg \
exiftool
ARG INSTALL_GIT=false
RUN if [ "$INSTALL_GIT" = "true" ]; then \
apt-get install -y --no-install-recommends \
git; \
fi
# Cleanup
RUN rm -rf /var/lib/apt/lists/*
WORKDIR /app
COPY . /app
RUN pip --no-cache-dir install \
/app/packages/markitdown[all] \
/app/packages/markitdown-sample-plugin
# Default USERID and GROUPID
ARG USERID=nobody
ARG GROUPID=nogroup
USER $USERID:$GROUPID
ENTRYPOINT [ "markitdown" ]

224
README.md
View file

@ -1,223 +1,9 @@
# MarkItDown
# MarkItUp
[![PyPI](https://img.shields.io/pypi/v/markitdown.svg)](https://pypi.org/project/markitdown/)
![PyPI - Downloads](https://img.shields.io/pypi/dd/markitdown)
[![Built by AutoGen Team](https://img.shields.io/badge/Built%20by-AutoGen%20Team-blue)](https://github.com/microsoft/autogen)
This is a fork of [MarkItDown](https://github.com/microsoft/markitdown).
> [!TIP]
> MarkItDown now offers an MCP (Model Context Protocol) server for integration with LLM applications like Claude Desktop. See [markitdown-mcp](https://github.com/microsoft/markitdown/tree/main/packages/markitdown-mcp) for more information.
While markitup is a useful tool, its returned content is too text-focused, which is not updated to the current rise of multi-modal LLMs.
> [!IMPORTANT]
> Breaking changes between 0.0.1 to 0.1.0:
> * Dependencies are now organized into optional feature-groups (further details below). Use `pip install 'markitdown[all]'` to have backward-compatible behavior.
> * convert\_stream() now requires a binary file-like object (e.g., a file opened in binary mode, or an io.BytesIO object). This is a breaking change from the previous version, where it previously also accepted text file-like objects, like io.StringIO.
> * The DocumentConverter class interface has changed to read from file-like streams rather than file paths. *No temporary files are created anymore*. If you are the maintainer of a plugin, or custom DocumentConverter, you likely need to update your code. Otherwise, if only using the MarkItDown class or CLI (as in these examples), you should not need to change anything.
## Features
MarkItDown is a lightweight Python utility for converting various files to Markdown for use with LLMs and related text analysis pipelines. To this end, it is most comparable to [textract](https://github.com/deanmalmgren/textract), but with a focus on preserving important document structure and content as Markdown (including: headings, lists, tables, links, etc.) While the output is often reasonably presentable and human-friendly, it is meant to be consumed by text analysis tools -- and may not be the best option for high-fidelity document conversions for human consumption.
At present, MarkItDown supports:
- PDF
- PowerPoint
- Word
- Excel
- Images (EXIF metadata and OCR)
- Audio (EXIF metadata and speech transcription)
- HTML
- Text-based formats (CSV, JSON, XML)
- ZIP files (iterates over contents)
- Youtube URLs
- EPubs
- ... and more!
## Why Markdown?
Markdown is extremely close to plain text, with minimal markup or formatting, but still
provides a way to represent important document structure. Mainstream LLMs, such as
OpenAI's GPT-4o, natively "_speak_" Markdown, and often incorporate Markdown into their
responses unprompted. This suggests that they have been trained on vast amounts of
Markdown-formatted text, and understand it well. As a side benefit, Markdown conventions
are also highly token-efficient.
## Installation
To install MarkItDown, use pip: `pip install 'markitdown[all]'`. Alternatively, you can install it from the source:
```bash
git clone git@github.com:microsoft/markitdown.git
cd markitdown
pip install -e 'packages/markitdown[all]'
```
## Usage
### Command-Line
```bash
markitdown path-to-file.pdf > document.md
```
Or use `-o` to specify the output file:
```bash
markitdown path-to-file.pdf -o document.md
```
You can also pipe content:
```bash
cat path-to-file.pdf | markitdown
```
### Optional Dependencies
MarkItDown has optional dependencies for activating various file formats. Earlier in this document, we installed all optional dependencies with the `[all]` option. However, you can also install them individually for more control. For example:
```bash
pip install 'markitdown[pdf, docx, pptx]'
```
will install only the dependencies for PDF, DOCX, and PPTX files.
At the moment, the following optional dependencies are available:
* `[all]` Installs all optional dependencies
* `[pptx]` Installs dependencies for PowerPoint files
* `[docx]` Installs dependencies for Word files
* `[xlsx]` Installs dependencies for Excel files
* `[xls]` Installs dependencies for older Excel files
* `[pdf]` Installs dependencies for PDF files
* `[outlook]` Installs dependencies for Outlook messages
* `[az-doc-intel]` Installs dependencies for Azure Document Intelligence
* `[audio-transcription]` Installs dependencies for audio transcription of wav and mp3 files
* `[youtube-transcription]` Installs dependencies for fetching YouTube video transcription
### Plugins
MarkItDown also supports 3rd-party plugins. Plugins are disabled by default. To list installed plugins:
```bash
markitdown --list-plugins
```
To enable plugins use:
```bash
markitdown --use-plugins path-to-file.pdf
```
To find available plugins, search GitHub for the hashtag `#markitdown-plugin`. To develop a plugin, see `packages/markitdown-sample-plugin`.
### Azure Document Intelligence
To use Microsoft Document Intelligence for conversion:
```bash
markitdown path-to-file.pdf -o document.md -d -e "<document_intelligence_endpoint>"
```
More information about how to set up an Azure Document Intelligence Resource can be found [here](https://learn.microsoft.com/en-us/azure/ai-services/document-intelligence/how-to-guides/create-document-intelligence-resource?view=doc-intel-4.0.0)
### Python API
Basic usage in Python:
```python
from markitdown import MarkItDown
md = MarkItDown(enable_plugins=False) # Set to True to enable plugins
result = md.convert("test.xlsx")
print(result.text_content)
```
Document Intelligence conversion in Python:
```python
from markitdown import MarkItDown
md = MarkItDown(docintel_endpoint="<document_intelligence_endpoint>")
result = md.convert("test.pdf")
print(result.text_content)
```
To use Large Language Models for image descriptions, provide `llm_client` and `llm_model`:
```python
from markitdown import MarkItDown
from openai import OpenAI
client = OpenAI()
md = MarkItDown(llm_client=client, llm_model="gpt-4o")
result = md.convert("example.jpg")
print(result.text_content)
```
### Docker
```sh
docker build -t markitdown:latest .
docker run --rm -i markitdown:latest < ~/your-file.pdf > output.md
```
## Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
### How to Contribute
You can help by looking at issues or helping review PRs. Any issue or PR is welcome, but we have also marked some as 'open for contribution' and 'open for reviewing' to help facilitate community contributions. These are ofcourse just suggestions and you are welcome to contribute in any way you like.
<div align="center">
| | All | Especially Needs Help from Community |
| ---------- | ------------------------------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------------- |
| **Issues** | [All Issues](https://github.com/microsoft/markitdown/issues) | [Issues open for contribution](https://github.com/microsoft/markitdown/issues?q=is%3Aissue+is%3Aopen+label%3A%22open+for+contribution%22) |
| **PRs** | [All PRs](https://github.com/microsoft/markitdown/pulls) | [PRs open for reviewing](https://github.com/microsoft/markitdown/pulls?q=is%3Apr+is%3Aopen+label%3A%22open+for+reviewing%22) |
</div>
### Running Tests and Checks
- Navigate to the MarkItDown package:
```sh
cd packages/markitdown
```
- Install `hatch` in your environment and run tests:
```sh
pip install hatch # Other ways of installing hatch: https://hatch.pypa.io/dev/install/
hatch shell
hatch test
```
(Alternative) Use the Devcontainer which has all the dependencies installed:
```sh
# Reopen the project in Devcontainer and run:
hatch test
```
- Run pre-commit checks before submitting a PR: `pre-commit run --all-files`
### Contributing 3rd-party Plugins
You can also contribute by creating and sharing 3rd party plugins. See `packages/markitdown-sample-plugin` for more details.
## Trademarks
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft
trademarks or logos is subject to and must follow
[Microsoft's Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/usage/general).
Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship.
Any use of third-party trademarks or logos are subject to those third-party's policies.
We plan to return an OpenAI compatible response, which can be used by most LLM clients.

View file

@ -1,41 +0,0 @@
<!-- BEGIN MICROSOFT SECURITY.MD V0.0.9 BLOCK -->
## Security
Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet) and [Xamarin](https://github.com/xamarin).
If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/security.md/definition), please report it to us as described below.
## Reporting Security Issues
**Please do not report security vulnerabilities through public GitHub issues.**
Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/security.md/msrc/create-report).
If you prefer to submit without logging in, send email to [secure@microsoft.com](mailto:secure@microsoft.com). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/security.md/msrc/pgp).
You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc).
Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
* Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
* Full paths of source file(s) related to the manifestation of the issue
* The location of the affected source code (tag/branch/commit or direct URL)
* Any special configuration required to reproduce the issue
* Step-by-step instructions to reproduce the issue
* Proof-of-concept or exploit code (if possible)
* Impact of the issue, including how an attacker might exploit the issue
This information will help us triage your report more quickly.
If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/security.md/msrc/bounty) page for more details about our active programs.
## Preferred Languages
We prefer all communications to be in English.
## Policy
Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/security.md/cvd).
<!-- END MICROSOFT SECURITY.MD BLOCK -->

View file

@ -1,25 +0,0 @@
# TODO: The maintainer of this repo has not yet edited this file
**REPO OWNER**: Do you want Customer Service & Support (CSS) support for this product/project?
- **No CSS support:** Fill out this template with information about how to file issues and get help.
- **Yes CSS support:** Fill out an intake form at [aka.ms/onboardsupport](https://aka.ms/onboardsupport). CSS will work with/help you to determine next steps.
- **Not sure?** Fill out an intake as though the answer were "Yes". CSS will help you decide.
*Then remove this first heading from this SUPPORT.MD file before publishing your repo.*
# Support
## How to file issues and get help
This project uses GitHub Issues to track bugs and feature requests. Please search the existing
issues before filing new issues to avoid duplicates. For new issues, file your bug or
feature request as a new Issue.
For help and questions about using this project, please **REPO MAINTAINER: INSERT INSTRUCTIONS HERE
FOR HOW TO ENGAGE REPO OWNERS OR COMMUNITY FOR HELP. COULD BE A STACK OVERFLOW TAG OR OTHER
CHANNEL. WHERE WILL YOU HELP PEOPLE?**.
## Microsoft Support Policy
Support for this **PROJECT or PRODUCT** is limited to the resources listed above.

View file

@ -1,52 +0,0 @@
# MarkItDown
> [!IMPORTANT]
> MarkItDown is a Python package and command-line utility for converting various files to Markdown (e.g., for indexing, text analysis, etc).
>
> For more information, and full documentation, see the project [README.md](https://github.com/microsoft/markitdown) on GitHub.
## Installation
From PyPI:
```bash
pip install markitdown[all]
```
From source:
```bash
git clone git@github.com:microsoft/markitdown.git
cd markitdown
pip install -e packages/markitdown[all]
```
## Usage
### Command-Line
```bash
markitdown path-to-file.pdf > document.md
```
### Python API
```python
from markitdown import MarkItDown
md = MarkItDown()
result = md.convert("test.xlsx")
print(result.text_content)
```
### More Information
For more information, and full documentation, see the project [README.md](https://github.com/microsoft/markitdown) on GitHub.
## Trademarks
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft
trademarks or logos is subject to and must follow
[Microsoft's Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/usage/general).
Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship.
Any use of third-party trademarks or logos are subject to those third-party's policies.

View file

@ -1,232 +0,0 @@
# THIRD-PARTY SOFTWARE NOTICES AND INFORMATION
**Do Not Translate or Localize**
This project incorporates components from the projects listed below. The original copyright notices and the licenses
under which MarkItDown received such components are set forth below. MarkItDown reserves all rights not expressly
granted herein, whether by implication, estoppel or otherwise.
1.dwml (https://github.com/xiilei/dwml)
dwml NOTICES AND INFORMATION BEGIN HERE
-----------------------------------------
NOTE 1: What follows is a verbatim copy of dwml's LICENSE file, as it appeared on March 28th, 2025 - including
placeholders for the copyright owner and year.
NOTE 2: The Apache License, Version 2.0, requires that modifications to the dwml source code be documented.
The following section summarizes these changes. The full details are available in the MarkItDown source code
repository under PR #1160 (https://github.com/microsoft/markitdown/pull/1160)
This project incorporates `dwml/latex_dict.py` and `dwml/omml.py` files without any additional logic modifications (which
lives in `packages/markitdown/src/markitdown/converter_utils/docx/math` location). However, we have reformatted the code
according to `black` code formatter. From `tests/docx.py` file, we have used `DOCXML_ROOT` XML namespaces and the rest of
the file is not used.
-----------------------------------------
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-----------------------------------------
END OF dwml NOTICES AND INFORMATION

View file

@ -1,770 +0,0 @@
import copy
import mimetypes
import os
import re
import sys
import shutil
import tempfile
import warnings
import traceback
import io
from dataclasses import dataclass
from importlib.metadata import entry_points
from typing import Any, List, Dict, Optional, Union, BinaryIO
from pathlib import Path
from urllib.parse import urlparse
from warnings import warn
import requests
import magika
import charset_normalizer
import codecs
from ._stream_info import StreamInfo
from ._uri_utils import parse_data_uri, file_uri_to_path
from .converters import (
PlainTextConverter,
HtmlConverter,
RssConverter,
WikipediaConverter,
YouTubeConverter,
IpynbConverter,
BingSerpConverter,
PdfConverter,
DocxConverter,
XlsxConverter,
XlsConverter,
PptxConverter,
ImageConverter,
AudioConverter,
OutlookMsgConverter,
ZipConverter,
EpubConverter,
DocumentIntelligenceConverter,
CsvConverter,
)
from ._base_converter import DocumentConverter, DocumentConverterResult
from ._exceptions import (
FileConversionException,
UnsupportedFormatException,
FailedConversionAttempt,
)
# Lower priority values are tried first.
PRIORITY_SPECIFIC_FILE_FORMAT = (
0.0 # e.g., .docx, .pdf, .xlsx, Or specific pages, e.g., wikipedia
)
PRIORITY_GENERIC_FILE_FORMAT = (
10.0 # Near catch-all converters for mimetypes like text/*, etc.
)
_plugins: Union[None, List[Any]] = None # If None, plugins have not been loaded yet.
def _load_plugins() -> Union[None, List[Any]]:
"""Lazy load plugins, exiting early if already loaded."""
global _plugins
# Skip if we've already loaded plugins
if _plugins is not None:
return _plugins
# Load plugins
_plugins = []
for entry_point in entry_points(group="markitdown.plugin"):
try:
_plugins.append(entry_point.load())
except Exception:
tb = traceback.format_exc()
warn(f"Plugin '{entry_point.name}' failed to load ... skipping:\n{tb}")
return _plugins
@dataclass(kw_only=True, frozen=True)
class ConverterRegistration:
"""A registration of a converter with its priority and other metadata."""
converter: DocumentConverter
priority: float
class MarkItDown:
"""(In preview) An extremely simple text-based document reader, suitable for LLM use.
This reader will convert common file-types or webpages to Markdown."""
def __init__(
self,
*,
enable_builtins: Union[None, bool] = None,
enable_plugins: Union[None, bool] = None,
**kwargs,
):
self._builtins_enabled = False
self._plugins_enabled = False
requests_session = kwargs.get("requests_session")
if requests_session is None:
self._requests_session = requests.Session()
else:
self._requests_session = requests_session
self._magika = magika.Magika()
# TODO - remove these (see enable_builtins)
self._llm_client: Any = None
self._llm_model: Union[str | None] = None
self._exiftool_path: Union[str | None] = None
self._style_map: Union[str | None] = None
# Register the converters
self._converters: List[ConverterRegistration] = []
if (
enable_builtins is None or enable_builtins
): # Default to True when not specified
self.enable_builtins(**kwargs)
if enable_plugins:
self.enable_plugins(**kwargs)
def enable_builtins(self, **kwargs) -> None:
"""
Enable and register built-in converters.
Built-in converters are enabled by default.
This method should only be called once, if built-ins were initially disabled.
"""
if not self._builtins_enabled:
# TODO: Move these into converter constructors
self._llm_client = kwargs.get("llm_client")
self._llm_model = kwargs.get("llm_model")
self._exiftool_path = kwargs.get("exiftool_path")
self._style_map = kwargs.get("style_map")
if self._exiftool_path is None:
self._exiftool_path = os.getenv("EXIFTOOL_PATH")
# Still none? Check well-known paths
if self._exiftool_path is None:
candidate = shutil.which("exiftool")
if candidate:
candidate = os.path.abspath(candidate)
if any(
d == os.path.dirname(candidate)
for d in [
"/usr/bin",
"/usr/local/bin",
"/opt",
"/opt/bin",
"/opt/local/bin",
"/opt/homebrew/bin",
"C:\\Windows\\System32",
"C:\\Program Files",
"C:\\Program Files (x86)",
]
):
self._exiftool_path = candidate
# Register converters for successful browsing operations
# Later registrations are tried first / take higher priority than earlier registrations
# To this end, the most specific converters should appear below the most generic converters
self.register_converter(
PlainTextConverter(), priority=PRIORITY_GENERIC_FILE_FORMAT
)
self.register_converter(
ZipConverter(markitdown=self), priority=PRIORITY_GENERIC_FILE_FORMAT
)
self.register_converter(
HtmlConverter(), priority=PRIORITY_GENERIC_FILE_FORMAT
)
self.register_converter(RssConverter())
self.register_converter(WikipediaConverter())
self.register_converter(YouTubeConverter())
self.register_converter(BingSerpConverter())
self.register_converter(DocxConverter())
self.register_converter(XlsxConverter())
self.register_converter(XlsConverter())
self.register_converter(PptxConverter())
self.register_converter(AudioConverter())
self.register_converter(ImageConverter())
self.register_converter(IpynbConverter())
self.register_converter(PdfConverter())
self.register_converter(OutlookMsgConverter())
self.register_converter(EpubConverter())
self.register_converter(CsvConverter())
# Register Document Intelligence converter at the top of the stack if endpoint is provided
docintel_endpoint = kwargs.get("docintel_endpoint")
if docintel_endpoint is not None:
docintel_args: Dict[str, Any] = {}
docintel_args["endpoint"] = docintel_endpoint
docintel_credential = kwargs.get("docintel_credential")
if docintel_credential is not None:
docintel_args["credential"] = docintel_credential
docintel_types = kwargs.get("docintel_file_types")
if docintel_types is not None:
docintel_args["file_types"] = docintel_types
self.register_converter(
DocumentIntelligenceConverter(**docintel_args),
)
self._builtins_enabled = True
else:
warn("Built-in converters are already enabled.", RuntimeWarning)
def enable_plugins(self, **kwargs) -> None:
"""
Enable and register converters provided by plugins.
Plugins are disabled by default.
This method should only be called once, if plugins were initially disabled.
"""
if not self._plugins_enabled:
# Load plugins
plugins = _load_plugins()
assert plugins is not None
for plugin in plugins:
try:
plugin.register_converters(self, **kwargs)
except Exception:
tb = traceback.format_exc()
warn(f"Plugin '{plugin}' failed to register converters:\n{tb}")
self._plugins_enabled = True
else:
warn("Plugins converters are already enabled.", RuntimeWarning)
def convert(
self,
source: Union[str, requests.Response, Path, BinaryIO],
*,
stream_info: Optional[StreamInfo] = None,
**kwargs: Any,
) -> DocumentConverterResult: # TODO: deal with kwargs
"""
Args:
- source: can be a path (str or Path), url, or a requests.response object
- stream_info: optional stream info to use for the conversion. If None, infer from source
- kwargs: additional arguments to pass to the converter
"""
# Local path or url
if isinstance(source, str):
if (
source.startswith("http:")
or source.startswith("https:")
or source.startswith("file:")
or source.startswith("data:")
):
# Rename the url argument to mock_url
# (Deprecated -- use stream_info)
_kwargs = {k: v for k, v in kwargs.items()}
if "url" in _kwargs:
_kwargs["mock_url"] = _kwargs["url"]
del _kwargs["url"]
return self.convert_uri(source, stream_info=stream_info, **_kwargs)
else:
return self.convert_local(source, stream_info=stream_info, **kwargs)
# Path object
elif isinstance(source, Path):
return self.convert_local(source, stream_info=stream_info, **kwargs)
# Request response
elif isinstance(source, requests.Response):
return self.convert_response(source, stream_info=stream_info, **kwargs)
# Binary stream
elif (
hasattr(source, "read")
and callable(source.read)
and not isinstance(source, io.TextIOBase)
):
return self.convert_stream(source, stream_info=stream_info, **kwargs)
else:
raise TypeError(
f"Invalid source type: {type(source)}. Expected str, requests.Response, BinaryIO."
)
def convert_local(
self,
path: Union[str, Path],
*,
stream_info: Optional[StreamInfo] = None,
file_extension: Optional[str] = None, # Deprecated -- use stream_info
url: Optional[str] = None, # Deprecated -- use stream_info
**kwargs: Any,
) -> DocumentConverterResult:
if isinstance(path, Path):
path = str(path)
# Build a base StreamInfo object from which to start guesses
base_guess = StreamInfo(
local_path=path,
extension=os.path.splitext(path)[1],
filename=os.path.basename(path),
)
# Extend the base_guess with any additional info from the arguments
if stream_info is not None:
base_guess = base_guess.copy_and_update(stream_info)
if file_extension is not None:
# Deprecated -- use stream_info
base_guess = base_guess.copy_and_update(extension=file_extension)
if url is not None:
# Deprecated -- use stream_info
base_guess = base_guess.copy_and_update(url=url)
with open(path, "rb") as fh:
guesses = self._get_stream_info_guesses(
file_stream=fh, base_guess=base_guess
)
return self._convert(file_stream=fh, stream_info_guesses=guesses, **kwargs)
def convert_stream(
self,
stream: BinaryIO,
*,
stream_info: Optional[StreamInfo] = None,
file_extension: Optional[str] = None, # Deprecated -- use stream_info
url: Optional[str] = None, # Deprecated -- use stream_info
**kwargs: Any,
) -> DocumentConverterResult:
guesses: List[StreamInfo] = []
# Do we have anything on which to base a guess?
base_guess = None
if stream_info is not None or file_extension is not None or url is not None:
# Start with a non-Null base guess
if stream_info is None:
base_guess = StreamInfo()
else:
base_guess = stream_info
if file_extension is not None:
# Deprecated -- use stream_info
assert base_guess is not None # for mypy
base_guess = base_guess.copy_and_update(extension=file_extension)
if url is not None:
# Deprecated -- use stream_info
assert base_guess is not None # for mypy
base_guess = base_guess.copy_and_update(url=url)
# Check if we have a seekable stream. If not, load the entire stream into memory.
if not stream.seekable():
buffer = io.BytesIO()
while True:
chunk = stream.read(4096)
if not chunk:
break
buffer.write(chunk)
buffer.seek(0)
stream = buffer
# Add guesses based on stream content
guesses = self._get_stream_info_guesses(
file_stream=stream, base_guess=base_guess or StreamInfo()
)
return self._convert(file_stream=stream, stream_info_guesses=guesses, **kwargs)
def convert_url(
self,
url: str,
*,
stream_info: Optional[StreamInfo] = None,
file_extension: Optional[str] = None,
mock_url: Optional[str] = None,
**kwargs: Any,
) -> DocumentConverterResult:
"""Alias for convert_uri()"""
# convert_url will likely be deprecated in the future in favor of convert_uri
return self.convert_uri(
url,
stream_info=stream_info,
file_extension=file_extension,
mock_url=mock_url,
**kwargs,
)
def convert_uri(
self,
uri: str,
*,
stream_info: Optional[StreamInfo] = None,
file_extension: Optional[str] = None, # Deprecated -- use stream_info
mock_url: Optional[
str
] = None, # Mock the request as if it came from a different URL
**kwargs: Any,
) -> DocumentConverterResult:
uri = uri.strip()
# File URIs
if uri.startswith("file:"):
netloc, path = file_uri_to_path(uri)
if netloc and netloc != "localhost":
raise ValueError(
f"Unsupported file URI: {uri}. Netloc must be empty or localhost."
)
return self.convert_local(
path,
stream_info=stream_info,
file_extension=file_extension,
url=mock_url,
**kwargs,
)
# Data URIs
elif uri.startswith("data:"):
mimetype, attributes, data = parse_data_uri(uri)
base_guess = StreamInfo(
mimetype=mimetype,
charset=attributes.get("charset"),
)
if stream_info is not None:
base_guess = base_guess.copy_and_update(stream_info)
return self.convert_stream(
io.BytesIO(data),
stream_info=base_guess,
file_extension=file_extension,
url=mock_url,
**kwargs,
)
# HTTP/HTTPS URIs
elif uri.startswith("http:") or uri.startswith("https:"):
response = self._requests_session.get(uri, stream=True)
response.raise_for_status()
return self.convert_response(
response,
stream_info=stream_info,
file_extension=file_extension,
url=mock_url,
**kwargs,
)
else:
raise ValueError(
f"Unsupported URI scheme: {uri.split(':')[0]}. Supported schemes are: file:, data:, http:, https:"
)
def convert_response(
self,
response: requests.Response,
*,
stream_info: Optional[StreamInfo] = None,
file_extension: Optional[str] = None, # Deprecated -- use stream_info
url: Optional[str] = None, # Deprecated -- use stream_info
**kwargs: Any,
) -> DocumentConverterResult:
# If there is a content-type header, get the mimetype and charset (if present)
mimetype: Optional[str] = None
charset: Optional[str] = None
if "content-type" in response.headers:
parts = response.headers["content-type"].split(";")
mimetype = parts.pop(0).strip()
for part in parts:
if part.strip().startswith("charset="):
_charset = part.split("=")[1].strip()
if len(_charset) > 0:
charset = _charset
# If there is a content-disposition header, get the filename and possibly the extension
filename: Optional[str] = None
extension: Optional[str] = None
if "content-disposition" in response.headers:
m = re.search(r"filename=([^;]+)", response.headers["content-disposition"])
if m:
filename = m.group(1).strip("\"'")
_, _extension = os.path.splitext(filename)
if len(_extension) > 0:
extension = _extension
# If there is still no filename, try to read it from the url
if filename is None:
parsed_url = urlparse(response.url)
_, _extension = os.path.splitext(parsed_url.path)
if len(_extension) > 0: # Looks like this might be a file!
filename = os.path.basename(parsed_url.path)
extension = _extension
# Create an initial guess from all this information
base_guess = StreamInfo(
mimetype=mimetype,
charset=charset,
filename=filename,
extension=extension,
url=response.url,
)
# Update with any additional info from the arguments
if stream_info is not None:
base_guess = base_guess.copy_and_update(stream_info)
if file_extension is not None:
# Deprecated -- use stream_info
base_guess = base_guess.copy_and_update(extension=file_extension)
if url is not None:
# Deprecated -- use stream_info
base_guess = base_guess.copy_and_update(url=url)
# Read into BytesIO
buffer = io.BytesIO()
for chunk in response.iter_content(chunk_size=512):
buffer.write(chunk)
buffer.seek(0)
# Convert
guesses = self._get_stream_info_guesses(
file_stream=buffer, base_guess=base_guess
)
return self._convert(file_stream=buffer, stream_info_guesses=guesses, **kwargs)
def _convert(
self, *, file_stream: BinaryIO, stream_info_guesses: List[StreamInfo], **kwargs
) -> DocumentConverterResult:
res: Union[None, DocumentConverterResult] = None
# Keep track of which converters throw exceptions
failed_attempts: List[FailedConversionAttempt] = []
# Create a copy of the page_converters list, sorted by priority.
# We do this with each call to _convert because the priority of converters may change between calls.
# The sort is guaranteed to be stable, so converters with the same priority will remain in the same order.
sorted_registrations = sorted(self._converters, key=lambda x: x.priority)
# Remember the initial stream position so that we can return to it
cur_pos = file_stream.tell()
for stream_info in stream_info_guesses + [StreamInfo()]:
for converter_registration in sorted_registrations:
converter = converter_registration.converter
# Sanity check -- make sure the cur_pos is still the same
assert (
cur_pos == file_stream.tell()
), f"File stream position should NOT change between guess iterations"
_kwargs = {k: v for k, v in kwargs.items()}
# Copy any additional global options
if "llm_client" not in _kwargs and self._llm_client is not None:
_kwargs["llm_client"] = self._llm_client
if "llm_model" not in _kwargs and self._llm_model is not None:
_kwargs["llm_model"] = self._llm_model
if "style_map" not in _kwargs and self._style_map is not None:
_kwargs["style_map"] = self._style_map
if "exiftool_path" not in _kwargs and self._exiftool_path is not None:
_kwargs["exiftool_path"] = self._exiftool_path
# Add the list of converters for nested processing
_kwargs["_parent_converters"] = self._converters
# Add legaxy kwargs
if stream_info is not None:
if stream_info.extension is not None:
_kwargs["file_extension"] = stream_info.extension
if stream_info.url is not None:
_kwargs["url"] = stream_info.url
# Check if the converter will accept the file, and if so, try to convert it
_accepts = False
try:
_accepts = converter.accepts(file_stream, stream_info, **_kwargs)
except NotImplementedError:
pass
# accept() should not have changed the file stream position
assert (
cur_pos == file_stream.tell()
), f"{type(converter).__name__}.accept() should NOT change the file_stream position"
# Attempt the conversion
if _accepts:
try:
res = converter.convert(file_stream, stream_info, **_kwargs)
except Exception:
failed_attempts.append(
FailedConversionAttempt(
converter=converter, exc_info=sys.exc_info()
)
)
finally:
file_stream.seek(cur_pos)
if res is not None:
# Normalize the content
res.text_content = "\n".join(
[line.rstrip() for line in re.split(r"\r?\n", res.text_content)]
)
res.text_content = re.sub(r"\n{3,}", "\n\n", res.text_content)
return res
# If we got this far without success, report any exceptions
if len(failed_attempts) > 0:
raise FileConversionException(attempts=failed_attempts)
# Nothing can handle it!
raise UnsupportedFormatException(
f"Could not convert stream to Markdown. No converter attempted a conversion, suggesting that the filetype is simply not supported."
)
def register_page_converter(self, converter: DocumentConverter) -> None:
"""DEPRECATED: User register_converter instead."""
warn(
"register_page_converter is deprecated. Use register_converter instead.",
DeprecationWarning,
)
self.register_converter(converter)
def register_converter(
self,
converter: DocumentConverter,
*,
priority: float = PRIORITY_SPECIFIC_FILE_FORMAT,
) -> None:
"""
Register a DocumentConverter with a given priority.
Priorities work as follows: By default, most converters get priority
DocumentConverter.PRIORITY_SPECIFIC_FILE_FORMAT (== 0). The exception
is the PlainTextConverter, HtmlConverter, and ZipConverter, which get
priority PRIORITY_SPECIFIC_FILE_FORMAT (== 10), with lower values
being tried first (i.e., higher priority).
Just prior to conversion, the converters are sorted by priority, using
a stable sort. This means that converters with the same priority will
remain in the same order, with the most recently registered converters
appearing first.
We have tight control over the order of built-in converters, but
plugins can register converters in any order. The registration's priority
field reasserts some control over the order of converters.
Plugins can register converters with any priority, to appear before or
after the built-ins. For example, a plugin with priority 9 will run
before the PlainTextConverter, but after the built-in converters.
"""
self._converters.insert(
0, ConverterRegistration(converter=converter, priority=priority)
)
def _get_stream_info_guesses(
self, file_stream: BinaryIO, base_guess: StreamInfo
) -> List[StreamInfo]:
"""
Given a base guess, attempt to guess or expand on the stream info using the stream content (via magika).
"""
guesses: List[StreamInfo] = []
# Enhance the base guess with information based on the extension or mimetype
enhanced_guess = base_guess.copy_and_update()
# If there's an extension and no mimetype, try to guess the mimetype
if base_guess.mimetype is None and base_guess.extension is not None:
_m, _ = mimetypes.guess_type(
"placeholder" + base_guess.extension, strict=False
)
if _m is not None:
enhanced_guess = enhanced_guess.copy_and_update(mimetype=_m)
# If there's a mimetype and no extension, try to guess the extension
if base_guess.mimetype is not None and base_guess.extension is None:
_e = mimetypes.guess_all_extensions(base_guess.mimetype, strict=False)
if len(_e) > 0:
enhanced_guess = enhanced_guess.copy_and_update(extension=_e[0])
# Call magika to guess from the stream
cur_pos = file_stream.tell()
try:
result = self._magika.identify_stream(file_stream)
if result.status == "ok" and result.prediction.output.label != "unknown":
# If it's text, also guess the charset
charset = None
if result.prediction.output.is_text:
# Read the first 4k to guess the charset
file_stream.seek(cur_pos)
stream_page = file_stream.read(4096)
charset_result = charset_normalizer.from_bytes(stream_page).best()
if charset_result is not None:
charset = self._normalize_charset(charset_result.encoding)
# Normalize the first extension listed
guessed_extension = None
if len(result.prediction.output.extensions) > 0:
guessed_extension = "." + result.prediction.output.extensions[0]
# Determine if the guess is compatible with the base guess
compatible = True
if (
base_guess.mimetype is not None
and base_guess.mimetype != result.prediction.output.mime_type
):
compatible = False
if (
base_guess.extension is not None
and base_guess.extension.lstrip(".")
not in result.prediction.output.extensions
):
compatible = False
if (
base_guess.charset is not None
and self._normalize_charset(base_guess.charset) != charset
):
compatible = False
if compatible:
# Add the compatible base guess
guesses.append(
StreamInfo(
mimetype=base_guess.mimetype
or result.prediction.output.mime_type,
extension=base_guess.extension or guessed_extension,
charset=base_guess.charset or charset,
filename=base_guess.filename,
local_path=base_guess.local_path,
url=base_guess.url,
)
)
else:
# The magika guess was incompatible with the base guess, so add both guesses
guesses.append(enhanced_guess)
guesses.append(
StreamInfo(
mimetype=result.prediction.output.mime_type,
extension=guessed_extension,
charset=charset,
filename=base_guess.filename,
local_path=base_guess.local_path,
url=base_guess.url,
)
)
else:
# There were no other guesses, so just add the base guess
guesses.append(enhanced_guess)
finally:
file_stream.seek(cur_pos)
return guesses
def _normalize_charset(self, charset: str | None) -> str | None:
"""
Normalize a charset string to a canonical form.
"""
if charset is None:
return None
try:
return codecs.lookup(charset).name
except LookupError:
return charset

View file

@ -1,32 +0,0 @@
from dataclasses import dataclass, asdict
from typing import Optional
@dataclass(kw_only=True, frozen=True)
class StreamInfo:
"""The StreamInfo class is used to store information about a file stream.
All fields can be None, and will depend on how the stream was opened.
"""
mimetype: Optional[str] = None
extension: Optional[str] = None
charset: Optional[str] = None
filename: Optional[
str
] = None # From local path, url, or Content-Disposition header
local_path: Optional[str] = None # If read from disk
url: Optional[str] = None # If read from url
def copy_and_update(self, *args, **kwargs):
"""Copy the StreamInfo object and update it with the given StreamInfo
instance and/or other keyword arguments."""
new_info = asdict(self)
for si in args:
assert isinstance(si, StreamInfo)
new_info.update({k: v for k, v in asdict(si).items() if v is not None})
if len(kwargs) > 0:
new_info.update(kwargs)
return StreamInfo(**new_info)

View file

@ -1,121 +0,0 @@
import io
import re
import base64
import binascii
from urllib.parse import parse_qs, urlparse
from typing import Any, BinaryIO, Optional
from bs4 import BeautifulSoup
from .._base_converter import DocumentConverter, DocumentConverterResult
from .._stream_info import StreamInfo
from ._markdownify import _CustomMarkdownify
ACCEPTED_MIME_TYPE_PREFIXES = [
"text/html",
"application/xhtml",
]
ACCEPTED_FILE_EXTENSIONS = [
".html",
".htm",
]
class BingSerpConverter(DocumentConverter):
"""
Handle Bing results pages (only the organic search results).
NOTE: It is better to use the Bing API
"""
def accepts(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> bool:
"""
Make sure we're dealing with HTML content *from* Bing.
"""
url = stream_info.url or ""
mimetype = (stream_info.mimetype or "").lower()
extension = (stream_info.extension or "").lower()
if not re.search(r"^https://www\.bing\.com/search\?q=", url):
# Not a Bing SERP URL
return False
if extension in ACCEPTED_FILE_EXTENSIONS:
return True
for prefix in ACCEPTED_MIME_TYPE_PREFIXES:
if mimetype.startswith(prefix):
return True
# Not HTML content
return False
def convert(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> DocumentConverterResult:
assert stream_info.url is not None
# Parse the query parameters
parsed_params = parse_qs(urlparse(stream_info.url).query)
query = parsed_params.get("q", [""])[0]
# Parse the stream
encoding = "utf-8" if stream_info.charset is None else stream_info.charset
soup = BeautifulSoup(file_stream, "html.parser", from_encoding=encoding)
# Clean up some formatting
for tptt in soup.find_all(class_="tptt"):
if hasattr(tptt, "string") and tptt.string:
tptt.string += " "
for slug in soup.find_all(class_="algoSlug_icon"):
slug.extract()
# Parse the algorithmic results
_markdownify = _CustomMarkdownify(**kwargs)
results = list()
for result in soup.find_all(class_="b_algo"):
if not hasattr(result, "find_all"):
continue
# Rewrite redirect urls
for a in result.find_all("a", href=True):
parsed_href = urlparse(a["href"])
qs = parse_qs(parsed_href.query)
# The destination is contained in the u parameter,
# but appears to be base64 encoded, with some prefix
if "u" in qs:
u = (
qs["u"][0][2:].strip() + "=="
) # Python 3 doesn't care about extra padding
try:
# RFC 4648 / Base64URL" variant, which uses "-" and "_"
a["href"] = base64.b64decode(u, altchars="-_").decode("utf-8")
except UnicodeDecodeError:
pass
except binascii.Error:
pass
# Convert to markdown
md_result = _markdownify.convert_soup(result).strip()
lines = [line.strip() for line in re.split(r"\n+", md_result)]
results.append("\n".join([line for line in lines if len(line) > 0]))
webpage_text = (
f"## A Bing search for '{query}' found the following results:\n\n"
+ "\n\n".join(results)
)
return DocumentConverterResult(
markdown=webpage_text,
title=None if soup.title is None else soup.title.string,
)

View file

@ -1,250 +0,0 @@
import sys
import re
import os
from typing import BinaryIO, Any, List, Optional, Union
from enum import Enum
from ._html_converter import HtmlConverter
from .._base_converter import DocumentConverter, DocumentConverterResult
from .._stream_info import StreamInfo
from .._exceptions import MissingDependencyException, MISSING_DEPENDENCY_MESSAGE
# Try loading optional (but in this case, required) dependencies
# Save reporting of any exceptions for later
_dependency_exc_info = None
try:
from azure.ai.documentintelligence import DocumentIntelligenceClient
from azure.ai.documentintelligence.models import (
AnalyzeDocumentRequest,
AnalyzeResult,
DocumentAnalysisFeature,
)
from azure.core.credentials import AzureKeyCredential, TokenCredential
from azure.identity import DefaultAzureCredential
except ImportError:
# Preserve the error and stack trace for later
_dependency_exc_info = sys.exc_info()
# Define these types for type hinting when the package is not available
class AzureKeyCredential:
pass
class TokenCredential:
pass
class DocumentIntelligenceClient:
pass
class AnalyzeDocumentRequest:
pass
class AnalyzeResult:
pass
class DocumentAnalysisFeature:
pass
class DefaultAzureCredential:
pass
# TODO: currently, there is a bug in the document intelligence SDK with importing the "ContentFormat" enum.
# This constant is a temporary fix until the bug is resolved.
CONTENT_FORMAT = "markdown"
class DocumentIntelligenceFileType(str, Enum):
"""Enum of file types supported by the Document Intelligence Converter."""
# No OCR
DOCX = "docx"
PPTX = "pptx"
XLSX = "xlsx"
HTML = "html"
# OCR
PDF = "pdf"
JPEG = "jpeg"
PNG = "png"
BMP = "bmp"
TIFF = "tiff"
def _get_mime_type_prefixes(types: List[DocumentIntelligenceFileType]) -> List[str]:
"""Get the MIME type prefixes for the given file types."""
prefixes: List[str] = []
for type_ in types:
if type_ == DocumentIntelligenceFileType.DOCX:
prefixes.append(
"application/vnd.openxmlformats-officedocument.wordprocessingml.document"
)
elif type_ == DocumentIntelligenceFileType.PPTX:
prefixes.append(
"application/vnd.openxmlformats-officedocument.presentationml"
)
elif type_ == DocumentIntelligenceFileType.XLSX:
prefixes.append(
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
elif type_ == DocumentIntelligenceFileType.PDF:
prefixes.append("application/pdf")
prefixes.append("application/x-pdf")
elif type_ == DocumentIntelligenceFileType.JPEG:
prefixes.append("image/jpeg")
elif type_ == DocumentIntelligenceFileType.PNG:
prefixes.append("image/png")
elif type_ == DocumentIntelligenceFileType.BMP:
prefixes.append("image/bmp")
elif type_ == DocumentIntelligenceFileType.TIFF:
prefixes.append("image/tiff")
return prefixes
def _get_file_extensions(types: List[DocumentIntelligenceFileType]) -> List[str]:
"""Get the file extensions for the given file types."""
extensions: List[str] = []
for type_ in types:
if type_ == DocumentIntelligenceFileType.DOCX:
extensions.append(".docx")
elif type_ == DocumentIntelligenceFileType.PPTX:
extensions.append(".pptx")
elif type_ == DocumentIntelligenceFileType.XLSX:
extensions.append(".xlsx")
elif type_ == DocumentIntelligenceFileType.PDF:
extensions.append(".pdf")
elif type_ == DocumentIntelligenceFileType.JPEG:
extensions.append(".jpg")
extensions.append(".jpeg")
elif type_ == DocumentIntelligenceFileType.PNG:
extensions.append(".png")
elif type_ == DocumentIntelligenceFileType.BMP:
extensions.append(".bmp")
elif type_ == DocumentIntelligenceFileType.TIFF:
extensions.append(".tiff")
return extensions
class DocumentIntelligenceConverter(DocumentConverter):
"""Specialized DocumentConverter that uses Document Intelligence to extract text from documents."""
def __init__(
self,
*,
endpoint: str,
api_version: str = "2024-07-31-preview",
credential: AzureKeyCredential | TokenCredential | None = None,
file_types: List[DocumentIntelligenceFileType] = [
DocumentIntelligenceFileType.DOCX,
DocumentIntelligenceFileType.PPTX,
DocumentIntelligenceFileType.XLSX,
DocumentIntelligenceFileType.PDF,
DocumentIntelligenceFileType.JPEG,
DocumentIntelligenceFileType.PNG,
DocumentIntelligenceFileType.BMP,
DocumentIntelligenceFileType.TIFF,
],
):
"""
Initialize the DocumentIntelligenceConverter.
Args:
endpoint (str): The endpoint for the Document Intelligence service.
api_version (str): The API version to use. Defaults to "2024-07-31-preview".
credential (AzureKeyCredential | TokenCredential | None): The credential to use for authentication.
file_types (List[DocumentIntelligenceFileType]): The file types to accept. Defaults to all supported file types.
"""
super().__init__()
self._file_types = file_types
# Raise an error if the dependencies are not available.
# This is different than other converters since this one isn't even instantiated
# unless explicitly requested.
if _dependency_exc_info is not None:
raise MissingDependencyException(
"DocumentIntelligenceConverter requires the optional dependency [az-doc-intel] (or [all]) to be installed. E.g., `pip install markitdown[az-doc-intel]`"
) from _dependency_exc_info[
1
].with_traceback( # type: ignore[union-attr]
_dependency_exc_info[2]
)
if credential is None:
if os.environ.get("AZURE_API_KEY") is None:
credential = DefaultAzureCredential()
else:
credential = AzureKeyCredential(os.environ["AZURE_API_KEY"])
self.endpoint = endpoint
self.api_version = api_version
self.doc_intel_client = DocumentIntelligenceClient(
endpoint=self.endpoint,
api_version=self.api_version,
credential=credential,
)
def accepts(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> bool:
mimetype = (stream_info.mimetype or "").lower()
extension = (stream_info.extension or "").lower()
if extension in _get_file_extensions(self._file_types):
return True
for prefix in _get_mime_type_prefixes(self._file_types):
if mimetype.startswith(prefix):
return True
return False
def _analysis_features(self, stream_info: StreamInfo) -> List[str]:
"""
Helper needed to determine which analysis features to use.
Certain document analysis features are not availiable for
office filetypes (.xlsx, .pptx, .html, .docx)
"""
mimetype = (stream_info.mimetype or "").lower()
extension = (stream_info.extension or "").lower()
# Types that don't support ocr
no_ocr_types = [
DocumentIntelligenceFileType.DOCX,
DocumentIntelligenceFileType.PPTX,
DocumentIntelligenceFileType.XLSX,
DocumentIntelligenceFileType.HTML,
]
if extension in _get_file_extensions(no_ocr_types):
return []
for prefix in _get_mime_type_prefixes(no_ocr_types):
if mimetype.startswith(prefix):
return []
return [
DocumentAnalysisFeature.FORMULAS, # enable formula extraction
DocumentAnalysisFeature.OCR_HIGH_RESOLUTION, # enable high resolution OCR
DocumentAnalysisFeature.STYLE_FONT, # enable font style extraction
]
def convert(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> DocumentConverterResult:
# Extract the text using Azure Document Intelligence
poller = self.doc_intel_client.begin_analyze_document(
model_id="prebuilt-layout",
body=AnalyzeDocumentRequest(bytes_source=file_stream.read()),
features=self._analysis_features(stream_info),
output_content_format=CONTENT_FORMAT, # TODO: replace with "ContentFormat.MARKDOWN" when the bug is fixed
)
result: AnalyzeResult = poller.result()
# remove comments from the markdown content generated by Doc Intelligence and append to markdown string
markdown_text = re.sub(r"<!--.*?-->", "", result.content, flags=re.DOTALL)
return DocumentConverterResult(markdown=markdown_text)

View file

@ -1,147 +0,0 @@
import os
import zipfile
import xml.dom.minidom as minidom
from typing import BinaryIO, Any, Dict, List
from ._html_converter import HtmlConverter
from .._base_converter import DocumentConverter, DocumentConverterResult
from .._stream_info import StreamInfo
ACCEPTED_MIME_TYPE_PREFIXES = [
"application/epub",
"application/epub+zip",
"application/x-epub+zip",
]
ACCEPTED_FILE_EXTENSIONS = [".epub"]
MIME_TYPE_MAPPING = {
".html": "text/html",
".xhtml": "application/xhtml+xml",
}
class EpubConverter(HtmlConverter):
"""
Converts EPUB files to Markdown. Style information (e.g.m headings) and tables are preserved where possible.
"""
def __init__(self):
super().__init__()
self._html_converter = HtmlConverter()
def accepts(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> bool:
mimetype = (stream_info.mimetype or "").lower()
extension = (stream_info.extension or "").lower()
if extension in ACCEPTED_FILE_EXTENSIONS:
return True
for prefix in ACCEPTED_MIME_TYPE_PREFIXES:
if mimetype.startswith(prefix):
return True
return False
def convert(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> DocumentConverterResult:
with zipfile.ZipFile(file_stream, "r") as z:
# Extracts metadata (title, authors, language, publisher, date, description, cover) from an EPUB file."""
# Locate content.opf
container_dom = minidom.parse(z.open("META-INF/container.xml"))
opf_path = container_dom.getElementsByTagName("rootfile")[0].getAttribute(
"full-path"
)
# Parse content.opf
opf_dom = minidom.parse(z.open(opf_path))
metadata: Dict[str, Any] = {
"title": self._get_text_from_node(opf_dom, "dc:title"),
"authors": self._get_all_texts_from_nodes(opf_dom, "dc:creator"),
"language": self._get_text_from_node(opf_dom, "dc:language"),
"publisher": self._get_text_from_node(opf_dom, "dc:publisher"),
"date": self._get_text_from_node(opf_dom, "dc:date"),
"description": self._get_text_from_node(opf_dom, "dc:description"),
"identifier": self._get_text_from_node(opf_dom, "dc:identifier"),
}
# Extract manifest items (ID → href mapping)
manifest = {
item.getAttribute("id"): item.getAttribute("href")
for item in opf_dom.getElementsByTagName("item")
}
# Extract spine order (ID refs)
spine_items = opf_dom.getElementsByTagName("itemref")
spine_order = [item.getAttribute("idref") for item in spine_items]
# Convert spine order to actual file paths
base_path = "/".join(
opf_path.split("/")[:-1]
) # Get base directory of content.opf
spine = [
f"{base_path}/{manifest[item_id]}" if base_path else manifest[item_id]
for item_id in spine_order
if item_id in manifest
]
# Extract and convert the content
markdown_content: List[str] = []
for file in spine:
if file in z.namelist():
with z.open(file) as f:
filename = os.path.basename(file)
extension = os.path.splitext(filename)[1].lower()
mimetype = MIME_TYPE_MAPPING.get(extension)
converted_content = self._html_converter.convert(
f,
StreamInfo(
mimetype=mimetype,
extension=extension,
filename=filename,
),
)
markdown_content.append(converted_content.markdown.strip())
# Format and add the metadata
metadata_markdown = []
for key, value in metadata.items():
if isinstance(value, list):
value = ", ".join(value)
if value:
metadata_markdown.append(f"**{key.capitalize()}:** {value}")
markdown_content.insert(0, "\n".join(metadata_markdown))
return DocumentConverterResult(
markdown="\n\n".join(markdown_content), title=metadata["title"]
)
def _get_text_from_node(self, dom: minidom.Document, tag_name: str) -> str | None:
"""Convenience function to extract a single occurrence of a tag (e.g., title)."""
texts = self._get_all_texts_from_nodes(dom, tag_name)
if len(texts) > 0:
return texts[0]
else:
return None
def _get_all_texts_from_nodes(
self, dom: minidom.Document, tag_name: str
) -> List[str]:
"""Helper function to extract all occurrences of a tag (e.g., multiple authors)."""
texts: List[str] = []
for node in dom.getElementsByTagName(tag_name):
if node.firstChild and hasattr(node.firstChild, "nodeValue"):
texts.append(node.firstChild.nodeValue.strip())
return texts

View file

@ -1,138 +0,0 @@
from typing import BinaryIO, Any, Union
import base64
import mimetypes
from ._exiftool import exiftool_metadata
from .._base_converter import DocumentConverter, DocumentConverterResult
from .._stream_info import StreamInfo
ACCEPTED_MIME_TYPE_PREFIXES = [
"image/jpeg",
"image/png",
]
ACCEPTED_FILE_EXTENSIONS = [".jpg", ".jpeg", ".png"]
class ImageConverter(DocumentConverter):
"""
Converts images to markdown via extraction of metadata (if `exiftool` is installed), and description via a multimodal LLM (if an llm_client is configured).
"""
def accepts(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any,
) -> bool:
mimetype = (stream_info.mimetype or "").lower()
extension = (stream_info.extension or "").lower()
if extension in ACCEPTED_FILE_EXTENSIONS:
return True
for prefix in ACCEPTED_MIME_TYPE_PREFIXES:
if mimetype.startswith(prefix):
return True
return False
def convert(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> DocumentConverterResult:
md_content = ""
# Add metadata
metadata = exiftool_metadata(
file_stream, exiftool_path=kwargs.get("exiftool_path")
)
if metadata:
for f in [
"ImageSize",
"Title",
"Caption",
"Description",
"Keywords",
"Artist",
"Author",
"DateTimeOriginal",
"CreateDate",
"GPSPosition",
]:
if f in metadata:
md_content += f"{f}: {metadata[f]}\n"
# Try describing the image with GPT
llm_client = kwargs.get("llm_client")
llm_model = kwargs.get("llm_model")
if llm_client is not None and llm_model is not None:
llm_description = self._get_llm_description(
file_stream,
stream_info,
client=llm_client,
model=llm_model,
prompt=kwargs.get("llm_prompt"),
)
if llm_description is not None:
md_content += "\n# Description:\n" + llm_description.strip() + "\n"
return DocumentConverterResult(
markdown=md_content,
)
def _get_llm_description(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
*,
client,
model,
prompt=None,
) -> Union[None, str]:
if prompt is None or prompt.strip() == "":
prompt = "Write a detailed caption for this image."
# Get the content type
content_type = stream_info.mimetype
if not content_type:
content_type, _ = mimetypes.guess_type(
"_dummy" + (stream_info.extension or "")
)
if not content_type:
content_type = "application/octet-stream"
# Convert to base64
cur_pos = file_stream.tell()
try:
base64_image = base64.b64encode(file_stream.read()).decode("utf-8")
except Exception as e:
return None
finally:
file_stream.seek(cur_pos)
# Prepare the data-uri
data_uri = f"data:{content_type};base64,{base64_image}"
# Prepare the OpenAI API request
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {
"url": data_uri,
},
},
],
}
]
# Call the OpenAI API
response = client.chat.completions.create(model=model, messages=messages)
return response.choices[0].message.content

View file

@ -1,98 +0,0 @@
from typing import BinaryIO, Any
import json
from .._base_converter import DocumentConverter, DocumentConverterResult
from .._exceptions import FileConversionException
from .._stream_info import StreamInfo
CANDIDATE_MIME_TYPE_PREFIXES = [
"application/json",
]
ACCEPTED_FILE_EXTENSIONS = [".ipynb"]
class IpynbConverter(DocumentConverter):
"""Converts Jupyter Notebook (.ipynb) files to Markdown."""
def accepts(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> bool:
mimetype = (stream_info.mimetype or "").lower()
extension = (stream_info.extension or "").lower()
if extension in ACCEPTED_FILE_EXTENSIONS:
return True
for prefix in CANDIDATE_MIME_TYPE_PREFIXES:
if mimetype.startswith(prefix):
# Read further to see if it's a notebook
cur_pos = file_stream.tell()
try:
encoding = stream_info.charset or "utf-8"
notebook_content = file_stream.read().decode(encoding)
return (
"nbformat" in notebook_content
and "nbformat_minor" in notebook_content
)
finally:
file_stream.seek(cur_pos)
return False
def convert(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> DocumentConverterResult:
# Parse and convert the notebook
result = None
encoding = stream_info.charset or "utf-8"
notebook_content = file_stream.read().decode(encoding=encoding)
return self._convert(json.loads(notebook_content))
def _convert(self, notebook_content: dict) -> DocumentConverterResult:
"""Helper function that converts notebook JSON content to Markdown."""
try:
md_output = []
title = None
for cell in notebook_content.get("cells", []):
cell_type = cell.get("cell_type", "")
source_lines = cell.get("source", [])
if cell_type == "markdown":
md_output.append("".join(source_lines))
# Extract the first # heading as title if not already found
if title is None:
for line in source_lines:
if line.startswith("# "):
title = line.lstrip("# ").strip()
break
elif cell_type == "code":
# Code cells are wrapped in Markdown code blocks
md_output.append(f"```python\n{''.join(source_lines)}\n```")
elif cell_type == "raw":
md_output.append(f"```\n{''.join(source_lines)}\n```")
md_text = "\n\n".join(md_output)
# Check for title in notebook metadata
title = notebook_content.get("metadata", {}).get("title", title)
return DocumentConverterResult(
markdown=md_text,
title=title,
)
except Exception as e:
raise FileConversionException(
f"Error converting .ipynb file: {str(e)}"
) from e

View file

@ -1,50 +0,0 @@
from typing import BinaryIO, Any, Union
import base64
import mimetypes
from .._stream_info import StreamInfo
def llm_caption(
file_stream: BinaryIO, stream_info: StreamInfo, *, client, model, prompt=None
) -> Union[None, str]:
if prompt is None or prompt.strip() == "":
prompt = "Write a detailed caption for this image."
# Get the content type
content_type = stream_info.mimetype
if not content_type:
content_type, _ = mimetypes.guess_type("_dummy" + (stream_info.extension or ""))
if not content_type:
content_type = "application/octet-stream"
# Convert to base64
cur_pos = file_stream.tell()
try:
base64_image = base64.b64encode(file_stream.read()).decode("utf-8")
except Exception as e:
return None
finally:
file_stream.seek(cur_pos)
# Prepare the data-uri
data_uri = f"data:{content_type};base64,{base64_image}"
# Prepare the OpenAI API request
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {
"url": data_uri,
},
},
],
}
]
# Call the OpenAI API
response = client.chat.completions.create(model=model, messages=messages)
return response.choices[0].message.content

View file

@ -1,149 +0,0 @@
import sys
from typing import Any, Union, BinaryIO
from .._stream_info import StreamInfo
from .._base_converter import DocumentConverter, DocumentConverterResult
from .._exceptions import MissingDependencyException, MISSING_DEPENDENCY_MESSAGE
# Try loading optional (but in this case, required) dependencies
# Save reporting of any exceptions for later
_dependency_exc_info = None
olefile = None
try:
import olefile # type: ignore[no-redef]
except ImportError:
# Preserve the error and stack trace for later
_dependency_exc_info = sys.exc_info()
ACCEPTED_MIME_TYPE_PREFIXES = [
"application/vnd.ms-outlook",
]
ACCEPTED_FILE_EXTENSIONS = [".msg"]
class OutlookMsgConverter(DocumentConverter):
"""Converts Outlook .msg files to markdown by extracting email metadata and content.
Uses the olefile package to parse the .msg file structure and extract:
- Email headers (From, To, Subject)
- Email body content
"""
def accepts(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> bool:
mimetype = (stream_info.mimetype or "").lower()
extension = (stream_info.extension or "").lower()
# Check the extension and mimetype
if extension in ACCEPTED_FILE_EXTENSIONS:
return True
for prefix in ACCEPTED_MIME_TYPE_PREFIXES:
if mimetype.startswith(prefix):
return True
# Brute force, check if we have an OLE file
cur_pos = file_stream.tell()
try:
if olefile and not olefile.isOleFile(file_stream):
return False
finally:
file_stream.seek(cur_pos)
# Brue force, check if it's an Outlook file
try:
if olefile is not None:
msg = olefile.OleFileIO(file_stream)
toc = "\n".join([str(stream) for stream in msg.listdir()])
return (
"__properties_version1.0" in toc
and "__recip_version1.0_#00000000" in toc
)
except Exception as e:
pass
finally:
file_stream.seek(cur_pos)
return False
def convert(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> DocumentConverterResult:
# Check: the dependencies
if _dependency_exc_info is not None:
raise MissingDependencyException(
MISSING_DEPENDENCY_MESSAGE.format(
converter=type(self).__name__,
extension=".msg",
feature="outlook",
)
) from _dependency_exc_info[
1
].with_traceback( # type: ignore[union-attr]
_dependency_exc_info[2]
)
assert (
olefile is not None
) # If we made it this far, olefile should be available
msg = olefile.OleFileIO(file_stream)
# Extract email metadata
md_content = "# Email Message\n\n"
# Get headers
headers = {
"From": self._get_stream_data(msg, "__substg1.0_0C1F001F"),
"To": self._get_stream_data(msg, "__substg1.0_0E04001F"),
"Subject": self._get_stream_data(msg, "__substg1.0_0037001F"),
}
# Add headers to markdown
for key, value in headers.items():
if value:
md_content += f"**{key}:** {value}\n"
md_content += "\n## Content\n\n"
# Get email body
body = self._get_stream_data(msg, "__substg1.0_1000001F")
if body:
md_content += body
msg.close()
return DocumentConverterResult(
markdown=md_content.strip(),
title=headers.get("Subject"),
)
def _get_stream_data(self, msg: Any, stream_path: str) -> Union[str, None]:
"""Helper to safely extract and decode stream data from the MSG file."""
assert olefile is not None
assert isinstance(
msg, olefile.OleFileIO
) # Ensure msg is of the correct type (type hinting is not possible with the optional olefile package)
try:
if msg.exists(stream_path):
data = msg.openstream(stream_path).read()
# Try UTF-16 first (common for .msg files)
try:
return data.decode("utf-16-le").strip()
except UnicodeDecodeError:
# Fall back to UTF-8
try:
return data.decode("utf-8").strip()
except UnicodeDecodeError:
# Last resort - ignore errors
return data.decode("utf-8", errors="ignore").strip()
except Exception:
pass
return None

View file

@ -1,78 +0,0 @@
import sys
import io
from typing import BinaryIO, Any
from ._html_converter import HtmlConverter
from .._base_converter import DocumentConverter, DocumentConverterResult
from .._stream_info import StreamInfo
from .._exceptions import MissingDependencyException, MISSING_DEPENDENCY_MESSAGE
# Try loading optional (but in this case, required) dependencies
# Save reporting of any exceptions for later
_dependency_exc_info = None
try:
import pdfminer
import pdfminer.high_level
except ImportError:
# Preserve the error and stack trace for later
_dependency_exc_info = sys.exc_info()
ACCEPTED_MIME_TYPE_PREFIXES = [
"application/pdf",
"application/x-pdf",
]
ACCEPTED_FILE_EXTENSIONS = [".pdf"]
class PdfConverter(DocumentConverter):
"""
Converts PDFs to Markdown. Most style information is ignored, so the results are essentially plain-text.
"""
def accepts(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> bool:
mimetype = (stream_info.mimetype or "").lower()
extension = (stream_info.extension or "").lower()
if extension in ACCEPTED_FILE_EXTENSIONS:
return True
for prefix in ACCEPTED_MIME_TYPE_PREFIXES:
if mimetype.startswith(prefix):
return True
return False
def convert(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> DocumentConverterResult:
# Check the dependencies
if _dependency_exc_info is not None:
raise MissingDependencyException(
MISSING_DEPENDENCY_MESSAGE.format(
converter=type(self).__name__,
extension=".pdf",
feature="pdf",
)
) from _dependency_exc_info[
1
].with_traceback( # type: ignore[union-attr]
_dependency_exc_info[2]
)
assert isinstance(file_stream, io.IOBase) # for mypy
return DocumentConverterResult(
markdown=pdfminer.high_level.extract_text(file_stream),
)

View file

@ -1,71 +0,0 @@
import sys
from typing import BinaryIO, Any
from charset_normalizer import from_bytes
from .._base_converter import DocumentConverter, DocumentConverterResult
from .._stream_info import StreamInfo
# Try loading optional (but in this case, required) dependencies
# Save reporting of any exceptions for later
_dependency_exc_info = None
try:
import mammoth
except ImportError:
# Preserve the error and stack trace for later
_dependency_exc_info = sys.exc_info()
ACCEPTED_MIME_TYPE_PREFIXES = [
"text/",
"application/json",
"application/markdown",
]
ACCEPTED_FILE_EXTENSIONS = [
".txt",
".text",
".md",
".markdown",
".json",
".jsonl",
]
class PlainTextConverter(DocumentConverter):
"""Anything with content type text/plain"""
def accepts(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> bool:
mimetype = (stream_info.mimetype or "").lower()
extension = (stream_info.extension or "").lower()
# If we have a charset, we can safely assume it's text
# With Magika in the earlier stages, this handles most cases
if stream_info.charset is not None:
return True
# Otherwise, check the mimetype and extension
if extension in ACCEPTED_FILE_EXTENSIONS:
return True
for prefix in ACCEPTED_MIME_TYPE_PREFIXES:
if mimetype.startswith(prefix):
return True
return False
def convert(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> DocumentConverterResult:
if stream_info.charset:
text_content = file_stream.read().decode(stream_info.charset)
else:
text_content = str(from_bytes(file_stream.read()).best())
return DocumentConverterResult(markdown=text_content)

View file

@ -1,191 +0,0 @@
from xml.dom import minidom
from typing import BinaryIO, Any, Union
from bs4 import BeautifulSoup
from ._markdownify import _CustomMarkdownify
from .._stream_info import StreamInfo
from .._base_converter import DocumentConverter, DocumentConverterResult
PRECISE_MIME_TYPE_PREFIXES = [
"application/rss",
"application/rss+xml",
"application/atom",
"application/atom+xml",
]
PRECISE_FILE_EXTENSIONS = [".rss", ".atom"]
CANDIDATE_MIME_TYPE_PREFIXES = [
"text/xml",
"application/xml",
]
CANDIDATE_FILE_EXTENSIONS = [
".xml",
]
class RssConverter(DocumentConverter):
"""Convert RSS / Atom type to markdown"""
def __init__(self):
super().__init__()
self._kwargs = {}
def accepts(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> bool:
mimetype = (stream_info.mimetype or "").lower()
extension = (stream_info.extension or "").lower()
# Check for precise mimetypes and file extensions
if extension in PRECISE_FILE_EXTENSIONS:
return True
for prefix in PRECISE_MIME_TYPE_PREFIXES:
if mimetype.startswith(prefix):
return True
# Check for precise mimetypes and file extensions
if extension in CANDIDATE_FILE_EXTENSIONS:
return self._check_xml(file_stream)
for prefix in CANDIDATE_MIME_TYPE_PREFIXES:
if mimetype.startswith(prefix):
return self._check_xml(file_stream)
return False
def _check_xml(self, file_stream: BinaryIO) -> bool:
cur_pos = file_stream.tell()
try:
doc = minidom.parse(file_stream)
return self._feed_type(doc) is not None
except BaseException as _:
pass
finally:
file_stream.seek(cur_pos)
return False
def _feed_type(self, doc: Any) -> str | None:
if doc.getElementsByTagName("rss"):
return "rss"
elif doc.getElementsByTagName("feed"):
root = doc.getElementsByTagName("feed")[0]
if root.getElementsByTagName("entry"):
# An Atom feed must have a root element of <feed> and at least one <entry>
return "atom"
return None
def convert(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> DocumentConverterResult:
self._kwargs = kwargs
doc = minidom.parse(file_stream)
feed_type = self._feed_type(doc)
if feed_type == "rss":
return self._parse_rss_type(doc)
elif feed_type == "atom":
return self._parse_atom_type(doc)
else:
raise ValueError("Unknown feed type")
def _parse_atom_type(self, doc: minidom.Document) -> DocumentConverterResult:
"""Parse the type of an Atom feed.
Returns None if the feed type is not recognized or something goes wrong.
"""
root = doc.getElementsByTagName("feed")[0]
title = self._get_data_by_tag_name(root, "title")
subtitle = self._get_data_by_tag_name(root, "subtitle")
entries = root.getElementsByTagName("entry")
md_text = f"# {title}\n"
if subtitle:
md_text += f"{subtitle}\n"
for entry in entries:
entry_title = self._get_data_by_tag_name(entry, "title")
entry_summary = self._get_data_by_tag_name(entry, "summary")
entry_updated = self._get_data_by_tag_name(entry, "updated")
entry_content = self._get_data_by_tag_name(entry, "content")
if entry_title:
md_text += f"\n## {entry_title}\n"
if entry_updated:
md_text += f"Updated on: {entry_updated}\n"
if entry_summary:
md_text += self._parse_content(entry_summary)
if entry_content:
md_text += self._parse_content(entry_content)
return DocumentConverterResult(
markdown=md_text,
title=title,
)
def _parse_rss_type(self, doc: minidom.Document) -> DocumentConverterResult:
"""Parse the type of an RSS feed.
Returns None if the feed type is not recognized or something goes wrong.
"""
root = doc.getElementsByTagName("rss")[0]
channel_list = root.getElementsByTagName("channel")
if not channel_list:
raise ValueError("No channel found in RSS feed")
channel = channel_list[0]
channel_title = self._get_data_by_tag_name(channel, "title")
channel_description = self._get_data_by_tag_name(channel, "description")
items = channel.getElementsByTagName("item")
if channel_title:
md_text = f"# {channel_title}\n"
if channel_description:
md_text += f"{channel_description}\n"
for item in items:
title = self._get_data_by_tag_name(item, "title")
description = self._get_data_by_tag_name(item, "description")
pubDate = self._get_data_by_tag_name(item, "pubDate")
content = self._get_data_by_tag_name(item, "content:encoded")
if title:
md_text += f"\n## {title}\n"
if pubDate:
md_text += f"Published on: {pubDate}\n"
if description:
md_text += self._parse_content(description)
if content:
md_text += self._parse_content(content)
return DocumentConverterResult(
markdown=md_text,
title=channel_title,
)
def _parse_content(self, content: str) -> str:
"""Parse the content of an RSS feed item"""
try:
# using bs4 because many RSS feeds have HTML-styled content
soup = BeautifulSoup(content, "html.parser")
return _CustomMarkdownify(**self._kwargs).convert_soup(soup)
except BaseException as _:
return content
def _get_data_by_tag_name(
self, element: minidom.Element, tag_name: str
) -> Union[str, None]:
"""Get data from first child element with the given tag name.
Returns None when no such element is found.
"""
nodes = element.getElementsByTagName(tag_name)
if not nodes:
return None
fc = nodes[0].firstChild
if fc:
if hasattr(fc, "data"):
return fc.data
return None

View file

@ -1,49 +0,0 @@
import io
import sys
from typing import BinaryIO
from .._exceptions import MissingDependencyException
# Try loading optional (but in this case, required) dependencies
# Save reporting of any exceptions for later
_dependency_exc_info = None
try:
# Suppress some warnings on library import
import warnings
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=SyntaxWarning)
import speech_recognition as sr
import pydub
except ImportError:
# Preserve the error and stack trace for later
_dependency_exc_info = sys.exc_info()
def transcribe_audio(file_stream: BinaryIO, *, audio_format: str = "wav") -> str:
# Check for installed dependencies
if _dependency_exc_info is not None:
raise MissingDependencyException(
"Speech transcription requires installing MarkItdown with the [audio-transcription] optional dependencies. E.g., `pip install markitdown[audio-transcription]` or `pip install markitdown[all]`"
) from _dependency_exc_info[
1
].with_traceback( # type: ignore[union-attr]
_dependency_exc_info[2]
)
if audio_format in ["wav", "aiff", "flac"]:
audio_source = file_stream
elif audio_format in ["mp3", "mp4"]:
audio_segment = pydub.AudioSegment.from_file(file_stream, format=audio_format)
audio_source = io.BytesIO()
audio_segment.export(audio_source, format="wav")
audio_source.seek(0)
else:
raise ValueError(f"Unsupported audio format: {audio_format}")
recognizer = sr.Recognizer()
with sr.AudioFile(audio_source) as source:
audio = recognizer.record(source)
transcript = recognizer.recognize_google(audio).strip()
return "[No speech detected]" if transcript == "" else transcript

View file

@ -1,88 +0,0 @@
import io
import re
import bs4
from typing import Any, BinaryIO, Optional
from .._base_converter import DocumentConverter, DocumentConverterResult
from .._stream_info import StreamInfo
from ._markdownify import _CustomMarkdownify
ACCEPTED_MIME_TYPE_PREFIXES = [
"text/html",
"application/xhtml",
]
ACCEPTED_FILE_EXTENSIONS = [
".html",
".htm",
]
class WikipediaConverter(DocumentConverter):
"""Handle Wikipedia pages separately, focusing only on the main document content."""
def accepts(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> bool:
"""
Make sure we're dealing with HTML content *from* Wikipedia.
"""
url = stream_info.url or ""
mimetype = (stream_info.mimetype or "").lower()
extension = (stream_info.extension or "").lower()
if not re.search(r"^https?:\/\/[a-zA-Z]{2,3}\.wikipedia.org\/", url):
# Not a Wikipedia URL
return False
if extension in ACCEPTED_FILE_EXTENSIONS:
return True
for prefix in ACCEPTED_MIME_TYPE_PREFIXES:
if mimetype.startswith(prefix):
return True
# Not HTML content
return False
def convert(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> DocumentConverterResult:
# Parse the stream
encoding = "utf-8" if stream_info.charset is None else stream_info.charset
soup = bs4.BeautifulSoup(file_stream, "html.parser", from_encoding=encoding)
# Remove javascript and style blocks
for script in soup(["script", "style"]):
script.extract()
# Print only the main content
body_elm = soup.find("div", {"id": "mw-content-text"})
title_elm = soup.find("span", {"class": "mw-page-title-main"})
webpage_text = ""
main_title = None if soup.title is None else soup.title.string
if body_elm:
# What's the title
if title_elm and isinstance(title_elm, bs4.Tag):
main_title = title_elm.string
# Convert the page
webpage_text = f"# {main_title}\n\n" + _CustomMarkdownify(
**kwargs
).convert_soup(body_elm)
else:
webpage_text = _CustomMarkdownify(**kwargs).convert_soup(soup)
return DocumentConverterResult(
markdown=webpage_text,
title=main_title,
)

View file

@ -1,224 +0,0 @@
import sys
import json
import time
import io
import re
import bs4
from typing import Any, BinaryIO, Optional, Dict, List, Union
from urllib.parse import parse_qs, urlparse, unquote
from .._base_converter import DocumentConverter, DocumentConverterResult
from .._stream_info import StreamInfo
# Optional YouTube transcription support
try:
# Suppress some warnings on library import
import warnings
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SyntaxWarning)
# Patch submitted upstream to fix the SyntaxWarning
from youtube_transcript_api import YouTubeTranscriptApi
IS_YOUTUBE_TRANSCRIPT_CAPABLE = True
except ModuleNotFoundError:
IS_YOUTUBE_TRANSCRIPT_CAPABLE = False
ACCEPTED_MIME_TYPE_PREFIXES = [
"text/html",
"application/xhtml",
]
ACCEPTED_FILE_EXTENSIONS = [
".html",
".htm",
]
class YouTubeConverter(DocumentConverter):
"""Handle YouTube specially, focusing on the video title, description, and transcript."""
def accepts(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> bool:
"""
Make sure we're dealing with HTML content *from* YouTube.
"""
url = stream_info.url or ""
mimetype = (stream_info.mimetype or "").lower()
extension = (stream_info.extension or "").lower()
url = unquote(url)
url = url.replace(r"\?", "?").replace(r"\=", "=")
if not url.startswith("https://www.youtube.com/watch?"):
# Not a YouTube URL
return False
if extension in ACCEPTED_FILE_EXTENSIONS:
return True
for prefix in ACCEPTED_MIME_TYPE_PREFIXES:
if mimetype.startswith(prefix):
return True
# Not HTML content
return False
def convert(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> DocumentConverterResult:
# Parse the stream
encoding = "utf-8" if stream_info.charset is None else stream_info.charset
soup = bs4.BeautifulSoup(file_stream, "html.parser", from_encoding=encoding)
# Read the meta tags
metadata: Dict[str, str] = {}
if soup.title and soup.title.string:
metadata["title"] = soup.title.string
for meta in soup(["meta"]):
if not isinstance(meta, bs4.Tag):
continue
for a in meta.attrs:
if a in ["itemprop", "property", "name"]:
key = str(meta.get(a, ""))
content = str(meta.get("content", ""))
if key and content: # Only add non-empty content
metadata[key] = content
break
# Try reading the description
try:
for script in soup(["script"]):
if not isinstance(script, bs4.Tag):
continue
if not script.string: # Skip empty scripts
continue
content = script.string
if "ytInitialData" in content:
match = re.search(r"var ytInitialData = ({.*?});", content)
if match:
data = json.loads(match.group(1))
attrdesc = self._findKey(data, "attributedDescriptionBodyText")
if attrdesc and isinstance(attrdesc, dict):
metadata["description"] = str(attrdesc.get("content", ""))
break
except Exception as e:
print(f"Error extracting description: {e}")
pass
# Start preparing the page
webpage_text = "# YouTube\n"
title = self._get(metadata, ["title", "og:title", "name"]) # type: ignore
assert isinstance(title, str)
if title:
webpage_text += f"\n## {title}\n"
stats = ""
views = self._get(metadata, ["interactionCount"]) # type: ignore
if views:
stats += f"- **Views:** {views}\n"
keywords = self._get(metadata, ["keywords"]) # type: ignore
if keywords:
stats += f"- **Keywords:** {keywords}\n"
runtime = self._get(metadata, ["duration"]) # type: ignore
if runtime:
stats += f"- **Runtime:** {runtime}\n"
if len(stats) > 0:
webpage_text += f"\n### Video Metadata\n{stats}\n"
description = self._get(metadata, ["description", "og:description"]) # type: ignore
if description:
webpage_text += f"\n### Description\n{description}\n"
if IS_YOUTUBE_TRANSCRIPT_CAPABLE:
ytt_api = YouTubeTranscriptApi()
transcript_text = ""
parsed_url = urlparse(stream_info.url) # type: ignore
params = parse_qs(parsed_url.query) # type: ignore
if "v" in params and params["v"][0]:
video_id = str(params["v"][0])
try:
youtube_transcript_languages = kwargs.get(
"youtube_transcript_languages", ("en",)
)
# Retry the transcript fetching operation
transcript = self._retry_operation(
lambda: ytt_api.fetch(
video_id, languages=youtube_transcript_languages
),
retries=3, # Retry 3 times
delay=2, # 2 seconds delay between retries
)
if transcript:
transcript_text = " ".join(
[part.text for part in transcript]
) # type: ignore
except Exception as e:
print(f"Error fetching transcript: {e}")
if transcript_text:
webpage_text += f"\n### Transcript\n{transcript_text}\n"
title = title if title else (soup.title.string if soup.title else "")
assert isinstance(title, str)
return DocumentConverterResult(
markdown=webpage_text,
title=title,
)
def _get(
self,
metadata: Dict[str, str],
keys: List[str],
default: Union[str, None] = None,
) -> Union[str, None]:
"""Get first non-empty value from metadata matching given keys."""
for k in keys:
if k in metadata:
return metadata[k]
return default
def _findKey(self, json: Any, key: str) -> Union[str, None]: # TODO: Fix json type
"""Recursively search for a key in nested dictionary/list structures."""
if isinstance(json, list):
for elm in json:
ret = self._findKey(elm, key)
if ret is not None:
return ret
elif isinstance(json, dict):
for k, v in json.items():
if k == key:
return json[k]
if result := self._findKey(v, key):
return result
return None
def _retry_operation(self, operation, retries=3, delay=2):
"""Retries the operation if it fails."""
attempt = 0
while attempt < retries:
try:
return operation() # Attempt the operation
except Exception as e:
print(f"Attempt {attempt + 1} failed: {e}")
if attempt < retries - 1:
time.sleep(delay) # Wait before retrying
attempt += 1
# If all attempts fail, raise the last exception
raise Exception(f"Operation failed after {retries} attempts.")

View file

@ -1,117 +0,0 @@
import sys
import zipfile
import io
import os
from typing import BinaryIO, Any, TYPE_CHECKING
from .._base_converter import DocumentConverter, DocumentConverterResult
from .._stream_info import StreamInfo
from .._exceptions import UnsupportedFormatException, FileConversionException
# Break otherwise circular import for type hinting
if TYPE_CHECKING:
from .._markitdown import MarkItDown
ACCEPTED_MIME_TYPE_PREFIXES = [
"application/zip",
]
ACCEPTED_FILE_EXTENSIONS = [".zip"]
class ZipConverter(DocumentConverter):
"""Converts ZIP files to markdown by extracting and converting all contained files.
The converter extracts the ZIP contents to a temporary directory, processes each file
using appropriate converters based on file extensions, and then combines the results
into a single markdown document. The temporary directory is cleaned up after processing.
Example output format:
```markdown
Content from the zip file `example.zip`:
## File: docs/readme.txt
This is the content of readme.txt
Multiple lines are preserved
## File: images/example.jpg
ImageSize: 1920x1080
DateTimeOriginal: 2024-02-15 14:30:00
Description: A beautiful landscape photo
## File: data/report.xlsx
## Sheet1
| Column1 | Column2 | Column3 |
|---------|---------|---------|
| data1 | data2 | data3 |
| data4 | data5 | data6 |
```
Key features:
- Maintains original file structure in headings
- Processes nested files recursively
- Uses appropriate converters for each file type
- Preserves formatting of converted content
- Cleans up temporary files after processing
"""
def __init__(
self,
*,
markitdown: "MarkItDown",
):
super().__init__()
self._markitdown = markitdown
def accepts(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> bool:
mimetype = (stream_info.mimetype or "").lower()
extension = (stream_info.extension or "").lower()
if extension in ACCEPTED_FILE_EXTENSIONS:
return True
for prefix in ACCEPTED_MIME_TYPE_PREFIXES:
if mimetype.startswith(prefix):
return True
return False
def convert(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> DocumentConverterResult:
file_path = stream_info.url or stream_info.local_path or stream_info.filename
md_content = f"Content from the zip file `{file_path}`:\n\n"
with zipfile.ZipFile(file_stream, "r") as zipObj:
for name in zipObj.namelist():
try:
z_file_stream = io.BytesIO(zipObj.read(name))
z_file_stream_info = StreamInfo(
extension=os.path.splitext(name)[1],
filename=os.path.basename(name),
)
result = self._markitdown.convert_stream(
stream=z_file_stream,
stream_info=z_file_stream_info,
)
if result is not None:
md_content += f"## File: {name}\n\n"
md_content += result.markdown + "\n\n"
except UnsupportedFormatException:
pass
except FileConversionException:
pass
return DocumentConverterResult(markdown=md_content.strip())

View file

@ -1,3 +0,0 @@
# SPDX-FileCopyrightText: 2024-present Adam Fourney <adamfo@microsoft.com>
#
# SPDX-License-Identifier: MIT

View file

@ -1,279 +0,0 @@
import dataclasses
from typing import List
@dataclasses.dataclass(frozen=True, kw_only=True)
class FileTestVector(object):
filename: str
mimetype: str | None
charset: str | None
url: str | None
must_include: List[str]
must_not_include: List[str]
GENERAL_TEST_VECTORS = [
FileTestVector(
filename="test.docx",
mimetype="application/vnd.openxmlformats-officedocument.wordprocessingml.document",
charset=None,
url=None,
must_include=[
"314b0a30-5b04-470b-b9f7-eed2c2bec74a",
"49e168b7-d2ae-407f-a055-2167576f39a1",
"## d666f1f7-46cb-42bd-9a39-9a39cf2a509f",
"# Abstract",
"# Introduction",
"AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation",
"data:image/png;base64...",
],
must_not_include=[
"",
],
),
FileTestVector(
filename="test.xlsx",
mimetype="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
charset=None,
url=None,
must_include=[
"## 09060124-b5e7-4717-9d07-3c046eb",
"6ff4173b-42a5-4784-9b19-f49caff4d93d",
"affc7dad-52dc-4b98-9b5d-51e65d8a8ad0",
],
must_not_include=[],
),
FileTestVector(
filename="test.xls",
mimetype="application/vnd.ms-excel",
charset=None,
url=None,
must_include=[
"## 09060124-b5e7-4717-9d07-3c046eb",
"6ff4173b-42a5-4784-9b19-f49caff4d93d",
"affc7dad-52dc-4b98-9b5d-51e65d8a8ad0",
],
must_not_include=[],
),
FileTestVector(
filename="test.pptx",
mimetype="application/vnd.openxmlformats-officedocument.presentationml.presentation",
charset=None,
url=None,
must_include=[
"2cdda5c8-e50e-4db4-b5f0-9722a649f455",
"04191ea8-5c73-4215-a1d3-1cfb43aaaf12",
"44bf7d06-5e7a-4a40-a2e1-a2e42ef28c8a",
"1b92870d-e3b5-4e65-8153-919f4ff45592",
"AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation",
"a3f6004b-6f4f-4ea8-bee3-3741f4dc385f", # chart title
"2003", # chart value
"![This phrase of the caption is Human-written.](Picture4.jpg)",
],
must_not_include=[""],
),
FileTestVector(
filename="test_outlook_msg.msg",
mimetype="application/vnd.ms-outlook",
charset=None,
url=None,
must_include=[
"# Email Message",
"**From:** test.sender@example.com",
"**To:** test.recipient@example.com",
"**Subject:** Test Email Message",
"## Content",
"This is the body of the test email message",
],
must_not_include=[],
),
FileTestVector(
filename="test.pdf",
mimetype="application/pdf",
charset=None,
url=None,
must_include=[
"While there is contemporaneous exploration of multi-agent approaches"
],
must_not_include=[],
),
FileTestVector(
filename="test_blog.html",
mimetype="text/html",
charset="utf-8",
url="https://microsoft.github.io/autogen/blog/2023/04/21/LLM-tuning-math",
must_include=[
"Large language models (LLMs) are powerful tools that can generate natural language texts for various applications, such as chatbots, summarization, translation, and more. GPT-4 is currently the state of the art LLM in the world. Is model selection irrelevant? What about inference parameters?",
"an example where high cost can easily prevent a generic complex",
],
must_not_include=[],
),
FileTestVector(
filename="test_wikipedia.html",
mimetype="text/html",
charset="utf-8",
url="https://en.wikipedia.org/wiki/Microsoft",
must_include=[
"Microsoft entered the operating system (OS) business in 1980 with its own version of [Unix]",
'Microsoft was founded by [Bill Gates](/wiki/Bill_Gates "Bill Gates")',
],
must_not_include=[
"You are encouraged to create an account and log in",
"154 languages",
"move to sidebar",
],
),
FileTestVector(
filename="test_serp.html",
mimetype="text/html",
charset="utf-8",
url="https://www.bing.com/search?q=microsoft+wikipedia",
must_include=[
"](https://en.wikipedia.org/wiki/Microsoft",
"Microsoft Corporation is **an American multinational corporation and technology company headquartered** in Redmond",
"19952007: Foray into the Web, Windows 95, Windows XP, and Xbox",
],
must_not_include=[
"https://www.bing.com/ck/a?!&&p=",
"",
],
must_not_include=[
"data:image/png;base64...",
],
),
FileTestVector(
filename="test.pptx",
mimetype="application/vnd.openxmlformats-officedocument.presentationml.presentation",
charset=None,
url=None,
must_include=[
"2cdda5c8-e50e-4db4-b5f0-9722a649f455",
"04191ea8-5c73-4215-a1d3-1cfb43aaaf12",
"44bf7d06-5e7a-4a40-a2e1-a2e42ef28c8a",
"1b92870d-e3b5-4e65-8153-919f4ff45592",
"AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation",
"a3f6004b-6f4f-4ea8-bee3-3741f4dc385f", # chart title
"2003", # chart value
"![This phrase of the caption is Human-written.]", # image caption
"",
],
must_not_include=[
"![This phrase of the caption is Human-written.](Picture4.jpg)",
],
),
]

View file

@ -1,35 +0,0 @@
#!/usr/bin/env python3 -m pytest
import subprocess
import pytest
from markitdown import __version__
# This file contains CLI tests that are not directly tested by the FileTestVectors.
# This includes things like help messages, version numbers, and invalid flags.
def test_version() -> None:
result = subprocess.run(
["python", "-m", "markitdown", "--version"], capture_output=True, text=True
)
assert result.returncode == 0, f"CLI exited with error: {result.stderr}"
assert __version__ in result.stdout, f"Version not found in output: {result.stdout}"
def test_invalid_flag() -> None:
result = subprocess.run(
["python", "-m", "markitdown", "--foobar"], capture_output=True, text=True
)
assert result.returncode != 0, f"CLI exited with error: {result.stderr}"
assert (
"unrecognized arguments" in result.stderr
), f"Expected 'unrecognized arguments' to appear in STDERR"
assert "SYNTAX" in result.stderr, f"Expected 'SYNTAX' to appear in STDERR"
if __name__ == "__main__":
"""Runs this file's tests from the command line."""
test_version()
test_invalid_flag()
print("All tests passed!")

View file

@ -1,227 +0,0 @@
#!/usr/bin/env python3 -m pytest
import os
import time
import pytest
import subprocess
import locale
from typing import List
if __name__ == "__main__":
from _test_vectors import (
GENERAL_TEST_VECTORS,
DATA_URI_TEST_VECTORS,
FileTestVector,
)
else:
from ._test_vectors import (
GENERAL_TEST_VECTORS,
DATA_URI_TEST_VECTORS,
FileTestVector,
)
from markitdown import (
MarkItDown,
UnsupportedFormatException,
FileConversionException,
StreamInfo,
)
skip_remote = (
True if os.environ.get("GITHUB_ACTIONS") else False
) # Don't run these tests in CI
TEST_FILES_DIR = os.path.join(os.path.dirname(__file__), "test_files")
TEST_FILES_URL = "https://raw.githubusercontent.com/microsoft/markitdown/refs/heads/main/packages/markitdown/tests/test_files"
# Prepare CLI test vectors (remove vectors that require mockig the url)
CLI_TEST_VECTORS: List[FileTestVector] = []
for test_vector in GENERAL_TEST_VECTORS:
if test_vector.url is not None:
continue
CLI_TEST_VECTORS.append(test_vector)
@pytest.fixture(scope="session")
def shared_tmp_dir(tmp_path_factory):
return tmp_path_factory.mktemp("pytest_tmp")
@pytest.mark.parametrize("test_vector", CLI_TEST_VECTORS)
def test_output_to_stdout(shared_tmp_dir, test_vector) -> None:
"""Test that the CLI outputs to stdout correctly."""
result = subprocess.run(
[
"python",
"-m",
"markitdown",
os.path.join(TEST_FILES_DIR, test_vector.filename),
],
capture_output=True,
text=True,
)
assert result.returncode == 0, f"CLI exited with error: {result.stderr}"
for test_string in test_vector.must_include:
assert test_string in result.stdout
for test_string in test_vector.must_not_include:
assert test_string not in result.stdout
@pytest.mark.parametrize("test_vector", CLI_TEST_VECTORS)
def test_output_to_file(shared_tmp_dir, test_vector) -> None:
"""Test that the CLI outputs to a file correctly."""
output_file = os.path.join(shared_tmp_dir, test_vector.filename + ".output")
result = subprocess.run(
[
"python",
"-m",
"markitdown",
"-o",
output_file,
os.path.join(TEST_FILES_DIR, test_vector.filename),
],
capture_output=True,
text=True,
)
assert result.returncode == 0, f"CLI exited with error: {result.stderr}"
assert os.path.exists(output_file), f"Output file not created: {output_file}"
with open(output_file, "r") as f:
output_data = f.read()
for test_string in test_vector.must_include:
assert test_string in output_data
for test_string in test_vector.must_not_include:
assert test_string not in output_data
os.remove(output_file)
assert not os.path.exists(output_file), f"Output file not deleted: {output_file}"
@pytest.mark.parametrize("test_vector", CLI_TEST_VECTORS)
def test_input_from_stdin_without_hints(shared_tmp_dir, test_vector) -> None:
"""Test that the CLI readds from stdin correctly."""
test_input = b""
with open(os.path.join(TEST_FILES_DIR, test_vector.filename), "rb") as stream:
test_input = stream.read()
result = subprocess.run(
[
"python",
"-m",
"markitdown",
os.path.join(TEST_FILES_DIR, test_vector.filename),
],
input=test_input,
capture_output=True,
text=False,
)
stdout = result.stdout.decode(locale.getpreferredencoding())
assert (
result.returncode == 0
), f"CLI exited with error: {result.stderr.decode('utf-8')}"
for test_string in test_vector.must_include:
assert test_string in stdout
for test_string in test_vector.must_not_include:
assert test_string not in stdout
@pytest.mark.skipif(
skip_remote,
reason="do not run tests that query external urls",
)
@pytest.mark.parametrize("test_vector", CLI_TEST_VECTORS)
def test_convert_url(shared_tmp_dir, test_vector):
"""Test the conversion of a stream with no stream info."""
# Note: tmp_dir is not used here, but is needed to match the signature
markitdown = MarkItDown()
time.sleep(1) # Ensure we don't hit rate limits
result = subprocess.run(
["python", "-m", "markitdown", TEST_FILES_URL + "/" + test_vector.filename],
capture_output=True,
text=False,
)
stdout = result.stdout.decode(locale.getpreferredencoding())
assert result.returncode == 0, f"CLI exited with error: {result.stderr}"
for test_string in test_vector.must_include:
assert test_string in stdout
for test_string in test_vector.must_not_include:
assert test_string not in stdout
@pytest.mark.parametrize("test_vector", DATA_URI_TEST_VECTORS)
def test_output_to_file_with_data_uris(shared_tmp_dir, test_vector) -> None:
"""Test CLI functionality when keep_data_uris is enabled"""
output_file = os.path.join(shared_tmp_dir, test_vector.filename + ".output")
result = subprocess.run(
[
"python",
"-m",
"markitdown",
"--keep-data-uris",
"-o",
output_file,
os.path.join(TEST_FILES_DIR, test_vector.filename),
],
capture_output=True,
text=True,
)
assert result.returncode == 0, f"CLI exited with error: {result.stderr}"
assert os.path.exists(output_file), f"Output file not created: {output_file}"
with open(output_file, "r") as f:
output_data = f.read()
for test_string in test_vector.must_include:
assert test_string in output_data
for test_string in test_vector.must_not_include:
assert test_string not in output_data
os.remove(output_file)
assert not os.path.exists(output_file), f"Output file not deleted: {output_file}"
if __name__ == "__main__":
import sys
import tempfile
"""Runs this file's tests from the command line."""
with tempfile.TemporaryDirectory() as tmp_dir:
# General tests
for test_function in [
test_output_to_stdout,
test_output_to_file,
test_input_from_stdin_without_hints,
test_convert_url,
]:
for test_vector in CLI_TEST_VECTORS:
print(
f"Running {test_function.__name__} on {test_vector.filename}...",
end="",
)
test_function(tmp_dir, test_vector)
print("OK")
# Data URI tests
for test_function in [
test_output_to_file_with_data_uris,
]:
for test_vector in DATA_URI_TEST_VECTORS:
print(
f"Running {test_function.__name__} on {test_vector.filename}...",
end="",
)
test_function(tmp_dir, test_vector)
print("OK")
print("All tests passed!")

View file

@ -1,419 +0,0 @@
#!/usr/bin/env python3 -m pytest
import io
import os
import re
import shutil
import openai
import pytest
from markitdown._uri_utils import parse_data_uri, file_uri_to_path
from markitdown import (
MarkItDown,
UnsupportedFormatException,
FileConversionException,
StreamInfo,
)
# This file contains module tests that are not directly tested by the FileTestVectors.
# This includes things like helper functions and runtime conversion options
# (e.g., LLM clients, exiftool path, transcription services, etc.)
skip_remote = (
True if os.environ.get("GITHUB_ACTIONS") else False
) # Don't run these tests in CI
# Don't run the llm tests without a key and the client library
skip_llm = False if os.environ.get("OPENAI_API_KEY") else True
try:
import openai
except ModuleNotFoundError:
skip_llm = True
# Skip exiftool tests if not installed
skip_exiftool = shutil.which("exiftool") is None
TEST_FILES_DIR = os.path.join(os.path.dirname(__file__), "test_files")
JPG_TEST_EXIFTOOL = {
"Author": "AutoGen Authors",
"Title": "AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation",
"Description": "AutoGen enables diverse LLM-based applications",
"ImageSize": "1615x1967",
"DateTimeOriginal": "2024:03:14 22:10:00",
}
MP3_TEST_EXIFTOOL = {
"Title": "f67a499e-a7d0-4ca3-a49b-358bd934ae3e",
"Artist": "Artist Name Test String",
"Album": "Album Name Test String",
"SampleRate": "48000",
}
PDF_TEST_URL = "https://arxiv.org/pdf/2308.08155v2.pdf"
PDF_TEST_STRINGS = [
"While there is contemporaneous exploration of multi-agent approaches"
]
YOUTUBE_TEST_URL = "https://www.youtube.com/watch?v=V2qZ_lgxTzg"
YOUTUBE_TEST_STRINGS = [
"## AutoGen FULL Tutorial with Python (Step-By-Step)",
"This is an intermediate tutorial for installing and using AutoGen locally",
"PT15M4S",
"the model we're going to be using today is GPT 3.5 turbo", # From the transcript
]
DOCX_COMMENT_TEST_STRINGS = [
"314b0a30-5b04-470b-b9f7-eed2c2bec74a",
"49e168b7-d2ae-407f-a055-2167576f39a1",
"## d666f1f7-46cb-42bd-9a39-9a39cf2a509f",
"# Abstract",
"# Introduction",
"AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation",
"This is a test comment. 12df-321a",
"Yet another comment in the doc. 55yiyi-asd09",
]
BLOG_TEST_URL = "https://microsoft.github.io/autogen/blog/2023/04/21/LLM-tuning-math"
BLOG_TEST_STRINGS = [
"Large language models (LLMs) are powerful tools that can generate natural language texts for various applications, such as chatbots, summarization, translation, and more. GPT-4 is currently the state of the art LLM in the world. Is model selection irrelevant? What about inference parameters?",
"an example where high cost can easily prevent a generic complex",
]
LLM_TEST_STRINGS = [
"5bda1dd6",
]
PPTX_TEST_STRINGS = [
"2cdda5c8-e50e-4db4-b5f0-9722a649f455",
"04191ea8-5c73-4215-a1d3-1cfb43aaaf12",
"44bf7d06-5e7a-4a40-a2e1-a2e42ef28c8a",
"1b92870d-e3b5-4e65-8153-919f4ff45592",
"AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation",
"a3f6004b-6f4f-4ea8-bee3-3741f4dc385f", # chart title
"2003", # chart value
]
# --- Helper Functions ---
def validate_strings(result, expected_strings, exclude_strings=None):
"""Validate presence or absence of specific strings."""
text_content = result.text_content.replace("\\", "")
for string in expected_strings:
assert string in text_content
if exclude_strings:
for string in exclude_strings:
assert string not in text_content
def test_stream_info_operations() -> None:
"""Test operations performed on StreamInfo objects."""
stream_info_original = StreamInfo(
mimetype="mimetype.1",
extension="extension.1",
charset="charset.1",
filename="filename.1",
local_path="local_path.1",
url="url.1",
)
# Check updating all attributes by keyword
keywords = ["mimetype", "extension", "charset", "filename", "local_path", "url"]
for keyword in keywords:
updated_stream_info = stream_info_original.copy_and_update(
**{keyword: f"{keyword}.2"}
)
# Make sure the targted attribute is updated
assert getattr(updated_stream_info, keyword) == f"{keyword}.2"
# Make sure the other attributes are unchanged
for k in keywords:
if k != keyword:
assert getattr(stream_info_original, k) == getattr(
updated_stream_info, k
)
# Check updating all attributes by passing a new StreamInfo object
keywords = ["mimetype", "extension", "charset", "filename", "local_path", "url"]
for keyword in keywords:
updated_stream_info = stream_info_original.copy_and_update(
StreamInfo(**{keyword: f"{keyword}.2"})
)
# Make sure the targted attribute is updated
assert getattr(updated_stream_info, keyword) == f"{keyword}.2"
# Make sure the other attributes are unchanged
for k in keywords:
if k != keyword:
assert getattr(stream_info_original, k) == getattr(
updated_stream_info, k
)
# Check mixing and matching
updated_stream_info = stream_info_original.copy_and_update(
StreamInfo(extension="extension.2", filename="filename.2"),
mimetype="mimetype.3",
charset="charset.3",
)
assert updated_stream_info.extension == "extension.2"
assert updated_stream_info.filename == "filename.2"
assert updated_stream_info.mimetype == "mimetype.3"
assert updated_stream_info.charset == "charset.3"
assert updated_stream_info.local_path == "local_path.1"
assert updated_stream_info.url == "url.1"
# Check multiple StreamInfo objects
updated_stream_info = stream_info_original.copy_and_update(
StreamInfo(extension="extension.4", filename="filename.5"),
StreamInfo(mimetype="mimetype.6", charset="charset.7"),
)
assert updated_stream_info.extension == "extension.4"
assert updated_stream_info.filename == "filename.5"
assert updated_stream_info.mimetype == "mimetype.6"
assert updated_stream_info.charset == "charset.7"
assert updated_stream_info.local_path == "local_path.1"
assert updated_stream_info.url == "url.1"
def test_data_uris() -> None:
# Test basic parsing of data URIs
data_uri = "data:text/plain;base64,SGVsbG8sIFdvcmxkIQ=="
mime_type, attributes, data = parse_data_uri(data_uri)
assert mime_type == "text/plain"
assert len(attributes) == 0
assert data == b"Hello, World!"
data_uri = "data:base64,SGVsbG8sIFdvcmxkIQ=="
mime_type, attributes, data = parse_data_uri(data_uri)
assert mime_type is None
assert len(attributes) == 0
assert data == b"Hello, World!"
data_uri = "data:text/plain;charset=utf-8;base64,SGVsbG8sIFdvcmxkIQ=="
mime_type, attributes, data = parse_data_uri(data_uri)
assert mime_type == "text/plain"
assert len(attributes) == 1
assert attributes["charset"] == "utf-8"
assert data == b"Hello, World!"
data_uri = "data:,Hello%2C%20World%21"
mime_type, attributes, data = parse_data_uri(data_uri)
assert mime_type is None
assert len(attributes) == 0
assert data == b"Hello, World!"
data_uri = "data:text/plain,Hello%2C%20World%21"
mime_type, attributes, data = parse_data_uri(data_uri)
assert mime_type == "text/plain"
assert len(attributes) == 0
assert data == b"Hello, World!"
data_uri = "data:text/plain;charset=utf-8,Hello%2C%20World%21"
mime_type, attributes, data = parse_data_uri(data_uri)
assert mime_type == "text/plain"
assert len(attributes) == 1
assert attributes["charset"] == "utf-8"
assert data == b"Hello, World!"
def test_file_uris() -> None:
# Test file URI with an empty host
file_uri = "file:///path/to/file.txt"
netloc, path = file_uri_to_path(file_uri)
assert netloc is None
assert path == "/path/to/file.txt"
# Test file URI with no host
file_uri = "file:/path/to/file.txt"
netloc, path = file_uri_to_path(file_uri)
assert netloc is None
assert path == "/path/to/file.txt"
# Test file URI with localhost
file_uri = "file://localhost/path/to/file.txt"
netloc, path = file_uri_to_path(file_uri)
assert netloc == "localhost"
assert path == "/path/to/file.txt"
# Test file URI with query parameters
file_uri = "file:///path/to/file.txt?param=value"
netloc, path = file_uri_to_path(file_uri)
assert netloc is None
assert path == "/path/to/file.txt"
# Test file URI with fragment
file_uri = "file:///path/to/file.txt#fragment"
netloc, path = file_uri_to_path(file_uri)
assert netloc is None
assert path == "/path/to/file.txt"
def test_docx_comments() -> None:
markitdown = MarkItDown()
# Test DOCX processing, with comments and setting style_map on init
markitdown_with_style_map = MarkItDown(style_map="comment-reference => ")
result = markitdown_with_style_map.convert(
os.path.join(TEST_FILES_DIR, "test_with_comment.docx")
)
validate_strings(result, DOCX_COMMENT_TEST_STRINGS)
def test_docx_equations() -> None:
markitdown = MarkItDown()
docx_file = os.path.join(TEST_FILES_DIR, "equations.docx")
result = markitdown.convert(docx_file)
# Check for inline equation m=1 (wrapped with single $) is present
assert "$m=1$" in result.text_content, "Inline equation $m=1$ not found"
# Find block equations wrapped with double $$ and check if they are present
block_equations = re.findall(r"\$\$(.+?)\$\$", result.text_content)
assert block_equations, "No block equations found in the document."
def test_input_as_strings() -> None:
markitdown = MarkItDown()
# Test input from a stream
input_data = b"<html><body><h1>Test</h1></body></html>"
result = markitdown.convert_stream(io.BytesIO(input_data))
assert "# Test" in result.text_content
# Test input with leading blank characters
input_data = b" \n\n\n<html><body><h1>Test</h1></body></html>"
result = markitdown.convert_stream(io.BytesIO(input_data))
assert "# Test" in result.text_content
@pytest.mark.skipif(
skip_remote,
reason="do not run tests that query external urls",
)
def test_markitdown_remote() -> None:
markitdown = MarkItDown()
# By URL
result = markitdown.convert(PDF_TEST_URL)
for test_string in PDF_TEST_STRINGS:
assert test_string in result.text_content
# Youtube
result = markitdown.convert(YOUTUBE_TEST_URL)
for test_string in YOUTUBE_TEST_STRINGS:
assert test_string in result.text_content
@pytest.mark.skipif(
skip_remote,
reason="do not run remotely run speech transcription tests",
)
def test_speech_transcription() -> None:
markitdown = MarkItDown()
# Test WAV files, MP3 and M4A files
for file_name in ["test.wav", "test.mp3", "test.m4a"]:
result = markitdown.convert(os.path.join(TEST_FILES_DIR, file_name))
result_lower = result.text_content.lower()
assert (
("1" in result_lower or "one" in result_lower)
and ("2" in result_lower or "two" in result_lower)
and ("3" in result_lower or "three" in result_lower)
and ("4" in result_lower or "four" in result_lower)
and ("5" in result_lower or "five" in result_lower)
)
def test_exceptions() -> None:
# Check that an exception is raised when trying to convert an unsupported format
markitdown = MarkItDown()
with pytest.raises(UnsupportedFormatException):
markitdown.convert(os.path.join(TEST_FILES_DIR, "random.bin"))
# Check that an exception is raised when trying to convert a file that is corrupted
with pytest.raises(FileConversionException) as exc_info:
markitdown.convert(
os.path.join(TEST_FILES_DIR, "random.bin"), file_extension=".pptx"
)
assert len(exc_info.value.attempts) == 1
assert type(exc_info.value.attempts[0].converter).__name__ == "PptxConverter"
@pytest.mark.skipif(
skip_exiftool,
reason="do not run if exiftool is not installed",
)
def test_markitdown_exiftool() -> None:
which_exiftool = shutil.which("exiftool")
assert which_exiftool is not None
# Test explicitly setting the location of exiftool
markitdown = MarkItDown(exiftool_path=which_exiftool)
result = markitdown.convert(os.path.join(TEST_FILES_DIR, "test.jpg"))
for key in JPG_TEST_EXIFTOOL:
target = f"{key}: {JPG_TEST_EXIFTOOL[key]}"
assert target in result.text_content
# Test setting the exiftool path through an environment variable
os.environ["EXIFTOOL_PATH"] = which_exiftool
markitdown = MarkItDown()
result = markitdown.convert(os.path.join(TEST_FILES_DIR, "test.jpg"))
for key in JPG_TEST_EXIFTOOL:
target = f"{key}: {JPG_TEST_EXIFTOOL[key]}"
assert target in result.text_content
# Test some other media types
result = markitdown.convert(os.path.join(TEST_FILES_DIR, "test.mp3"))
for key in MP3_TEST_EXIFTOOL:
target = f"{key}: {MP3_TEST_EXIFTOOL[key]}"
assert target in result.text_content
@pytest.mark.skipif(
skip_llm,
reason="do not run llm tests without a key",
)
def test_markitdown_llm() -> None:
client = openai.OpenAI()
markitdown = MarkItDown(llm_client=client, llm_model="gpt-4o")
result = markitdown.convert(os.path.join(TEST_FILES_DIR, "test_llm.jpg"))
for test_string in LLM_TEST_STRINGS:
assert test_string in result.text_content
# This is not super precise. It would also accept "red square", "blue circle",
# "the square is not blue", etc. But it's sufficient for this test.
for test_string in ["red", "circle", "blue", "square"]:
assert test_string in result.text_content.lower()
# Images embedded in PPTX files
result = markitdown.convert(os.path.join(TEST_FILES_DIR, "test.pptx"))
# LLM Captions are included
for test_string in LLM_TEST_STRINGS:
assert test_string in result.text_content
# Standard alt text is included
validate_strings(result, PPTX_TEST_STRINGS)
if __name__ == "__main__":
"""Runs this file's tests from the command line."""
for test in [
test_stream_info_operations,
test_data_uris,
test_file_uris,
test_docx_comments,
test_input_as_strings,
test_markitdown_remote,
test_speech_transcription,
test_exceptions,
test_markitdown_exiftool,
test_markitdown_llm,
]:
print(f"Running {test.__name__}...", end="")
test()
print("OK")
print("All tests passed!")

View file

@ -1,239 +0,0 @@
#!/usr/bin/env python3 -m pytest
import os
import time
import pytest
import codecs
import base64
from pathlib import Path
if __name__ == "__main__":
from _test_vectors import GENERAL_TEST_VECTORS, DATA_URI_TEST_VECTORS
else:
from ._test_vectors import GENERAL_TEST_VECTORS, DATA_URI_TEST_VECTORS
from markitdown import (
MarkItDown,
UnsupportedFormatException,
FileConversionException,
StreamInfo,
)
skip_remote = (
True if os.environ.get("GITHUB_ACTIONS") else False
) # Don't run these tests in CI
TEST_FILES_DIR = os.path.join(os.path.dirname(__file__), "test_files")
TEST_FILES_URL = "https://raw.githubusercontent.com/microsoft/markitdown/refs/heads/main/packages/markitdown/tests/test_files"
@pytest.mark.parametrize("test_vector", GENERAL_TEST_VECTORS)
def test_guess_stream_info(test_vector):
"""Test the ability to guess stream info."""
markitdown = MarkItDown()
local_path = os.path.join(TEST_FILES_DIR, test_vector.filename)
expected_extension = os.path.splitext(test_vector.filename)[1]
with open(local_path, "rb") as stream:
guesses = markitdown._get_stream_info_guesses(
stream,
base_guess=StreamInfo(
filename=os.path.basename(test_vector.filename),
local_path=local_path,
extension=expected_extension,
),
)
# For some limited exceptions, we can't guarantee the exact
# mimetype or extension, so we'll special-case them here.
if test_vector.filename in [
"test_outlook_msg.msg",
]:
return
assert guesses[0].mimetype == test_vector.mimetype
assert guesses[0].extension == expected_extension
assert guesses[0].charset == test_vector.charset
@pytest.mark.parametrize("test_vector", GENERAL_TEST_VECTORS)
def test_convert_local(test_vector):
"""Test the conversion of a local file."""
markitdown = MarkItDown()
result = markitdown.convert(
os.path.join(TEST_FILES_DIR, test_vector.filename), url=test_vector.url
)
for string in test_vector.must_include:
assert string in result.markdown
for string in test_vector.must_not_include:
assert string not in result.markdown
@pytest.mark.parametrize("test_vector", GENERAL_TEST_VECTORS)
def test_convert_stream_with_hints(test_vector):
"""Test the conversion of a stream with full stream info."""
markitdown = MarkItDown()
stream_info = StreamInfo(
extension=os.path.splitext(test_vector.filename)[1],
mimetype=test_vector.mimetype,
charset=test_vector.charset,
)
with open(os.path.join(TEST_FILES_DIR, test_vector.filename), "rb") as stream:
result = markitdown.convert(
stream, stream_info=stream_info, url=test_vector.url
)
for string in test_vector.must_include:
assert string in result.markdown
for string in test_vector.must_not_include:
assert string not in result.markdown
@pytest.mark.parametrize("test_vector", GENERAL_TEST_VECTORS)
def test_convert_stream_without_hints(test_vector):
"""Test the conversion of a stream with no stream info."""
markitdown = MarkItDown()
with open(os.path.join(TEST_FILES_DIR, test_vector.filename), "rb") as stream:
result = markitdown.convert(stream, url=test_vector.url)
for string in test_vector.must_include:
assert string in result.markdown
for string in test_vector.must_not_include:
assert string not in result.markdown
@pytest.mark.skipif(
skip_remote,
reason="do not run tests that query external urls",
)
@pytest.mark.parametrize("test_vector", GENERAL_TEST_VECTORS)
def test_convert_http_uri(test_vector):
"""Test the conversion of an HTTP:// or HTTPS:// URI."""
markitdown = MarkItDown()
time.sleep(1) # Ensure we don't hit rate limits
result = markitdown.convert(
TEST_FILES_URL + "/" + test_vector.filename,
url=test_vector.url, # Mock where this file would be found
)
for string in test_vector.must_include:
assert string in result.markdown
for string in test_vector.must_not_include:
assert string not in result.markdown
@pytest.mark.parametrize("test_vector", GENERAL_TEST_VECTORS)
def test_convert_file_uri(test_vector):
"""Test the conversion of a file:// URI."""
markitdown = MarkItDown()
result = markitdown.convert(
Path(os.path.join(TEST_FILES_DIR, test_vector.filename)).as_uri(),
url=test_vector.url,
)
for string in test_vector.must_include:
assert string in result.markdown
for string in test_vector.must_not_include:
assert string not in result.markdown
@pytest.mark.parametrize("test_vector", GENERAL_TEST_VECTORS)
def test_convert_data_uri(test_vector):
"""Test the conversion of a data URI."""
markitdown = MarkItDown()
data = ""
with open(os.path.join(TEST_FILES_DIR, test_vector.filename), "rb") as stream:
data = base64.b64encode(stream.read()).decode("utf-8")
mimetype = test_vector.mimetype
data_uri = f"data:{mimetype};base64,{data}"
result = markitdown.convert(
data_uri,
url=test_vector.url,
)
for string in test_vector.must_include:
assert string in result.markdown
for string in test_vector.must_not_include:
assert string not in result.markdown
@pytest.mark.parametrize("test_vector", DATA_URI_TEST_VECTORS)
def test_convert_keep_data_uris(test_vector):
"""Test API functionality when keep_data_uris is enabled"""
markitdown = MarkItDown()
# Test local file conversion
result = markitdown.convert(
os.path.join(TEST_FILES_DIR, test_vector.filename),
keep_data_uris=True,
url=test_vector.url,
)
for string in test_vector.must_include:
assert string in result.markdown
for string in test_vector.must_not_include:
assert string not in result.markdown
@pytest.mark.parametrize("test_vector", DATA_URI_TEST_VECTORS)
def test_convert_stream_keep_data_uris(test_vector):
"""Test the conversion of a stream with no stream info."""
markitdown = MarkItDown()
stream_info = StreamInfo(
extension=os.path.splitext(test_vector.filename)[1],
mimetype=test_vector.mimetype,
charset=test_vector.charset,
)
with open(os.path.join(TEST_FILES_DIR, test_vector.filename), "rb") as stream:
result = markitdown.convert(
stream, stream_info=stream_info, keep_data_uris=True, url=test_vector.url
)
for string in test_vector.must_include:
assert string in result.markdown
for string in test_vector.must_not_include:
assert string not in result.markdown
if __name__ == "__main__":
import sys
"""Runs this file's tests from the command line."""
# General tests
for test_function in [
test_guess_stream_info,
test_convert_local,
test_convert_stream_with_hints,
test_convert_stream_without_hints,
test_convert_http_uri,
test_convert_file_uri,
test_convert_data_uri,
]:
for test_vector in GENERAL_TEST_VECTORS:
print(
f"Running {test_function.__name__} on {test_vector.filename}...", end=""
)
test_function(test_vector)
print("OK")
# Data URI tests
for test_function in [
test_convert_keep_data_uris,
test_convert_stream_keep_data_uris,
]:
for test_vector in DATA_URI_TEST_VECTORS:
print(
f"Running {test_function.__name__} on {test_vector.filename}...", end=""
)
test_function(test_vector)
print("OK")
print("All tests passed!")

View file

@ -23,4 +23,4 @@ ARG GROUPID=nogroup
USER $USERID:$GROUPID
ENTRYPOINT [ "markitdown-mcp" ]
ENTRYPOINT [ "markitup-mcp" ]

View file

@ -1,10 +1,10 @@
# MarkItDown-MCP
# MarkItUp-MCP
[![PyPI](https://img.shields.io/pypi/v/markitdown-mcp.svg)](https://pypi.org/project/markitdown-mcp/)
![PyPI - Downloads](https://img.shields.io/pypi/dd/markitdown-mcp)
[![PyPI](https://img.shields.io/pypi/v/markitup-mcp.svg)](https://pypi.org/project/markitup-mcp/)
![PyPI - Downloads](https://img.shields.io/pypi/dd/markitup-mcp)
[![Built by AutoGen Team](https://img.shields.io/badge/Built%20by-AutoGen%20Team-blue)](https://github.com/microsoft/autogen)
The `markitdown-mcp` package provides a lightweight STDIO and SSE MCP server for calling MarkItDown.
The `markitup-mcp` package provides a lightweight STDIO and SSE MCP server for calling MarkItUp.
It exposes one tool: `convert_to_markdown(uri)`, where uri can be any `http:`, `https:`, `file:`, or `data:` URI.
@ -13,7 +13,7 @@ It exposes one tool: `convert_to_markdown(uri)`, where uri can be any `http:`, `
To install the package, use pip:
```bash
pip install markitdown-mcp
pip install markitup-mcp
```
## Usage
@ -22,30 +22,30 @@ To run the MCP server, ussing STDIO (default) use the following command:
```bash
markitdown-mcp
markitup-mcp
```
To run the MCP server, using SSE use the following command:
```bash
markitdown-mcp --sse --host 127.0.0.1 --port 3001
markitup-mcp --sse --host 127.0.0.1 --port 3001
```
## Running in Docker
To run `markitdown-mcp` in Docker, build the Docker image using the provided Dockerfile:
To run `markitup-mcp` in Docker, build the Docker image using the provided Dockerfile:
```bash
docker build -t markitdown-mcp:latest .
docker build -t markitup-mcp:latest .
```
And run it using:
```bash
docker run -it --rm markitdown-mcp:latest
docker run -it --rm markitup-mcp:latest
```
This will be sufficient for remote URIs. To access local files, you need to mount the local directory into the container. For example, if you want to access files in `/home/user/data`, you can run:
```bash
docker run -it --rm -v /home/user/data:/workdir markitdown-mcp:latest
docker run -it --rm -v /home/user/data:/workdir markitup-mcp:latest
```
Once mounted, all files under data will be accessible under `/workdir` in the container. For example, if you have a file `example.txt` in `/home/user/data`, it will be accessible in the container at `/workdir/example.txt`.
@ -61,13 +61,13 @@ Edit it to include the following JSON entry:
```json
{
"mcpServers": {
"markitdown": {
"markitup": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"markitdown-mcp:latest"
"markitup-mcp:latest"
]
}
}
@ -79,7 +79,7 @@ If you want to mount a directory, adjust it accordingly:
```json
{
"mcpServers": {
"markitdown": {
"markitup": {
"command": "docker",
"args": [
"run",
@ -87,7 +87,7 @@ If you want to mount a directory, adjust it accordingly:
"-i",
"-v",
"/home/user/data:/workdir",
"markitdown-mcp:latest"
"markitup-mcp:latest"
]
}
}
@ -106,7 +106,7 @@ You can then connect to the insepctor through the specified host and port (e.g.,
If using STDIO:
* select `STDIO` as the transport type,
* input `markitdown-mcp` as the command, and
* input `markitup-mcp` as the command, and
* click `Connect`
If using SSE:

View file

@ -3,9 +3,9 @@ requires = ["hatchling"]
build-backend = "hatchling.build"
[project]
name = "markitdown-mcp"
name = "markitup-mcp"
dynamic = ["version"]
description = 'An MCP server for the "markitdown" library.'
description = 'An MCP server for the "markitup" library.'
readme = "README.md"
requires-python = ">=3.10"
license = "MIT"
@ -25,38 +25,38 @@ classifiers = [
]
dependencies = [
"mcp~=1.5.0",
"markitdown[all]>=0.1.1,<0.2.0",
"markitup[all]>=0.1.1,<0.2.0",
]
[project.urls]
Documentation = "https://github.com/microsoft/markitdown#readme"
Issues = "https://github.com/microsoft/markitdown/issues"
Source = "https://github.com/microsoft/markitdown"
Documentation = "https://github.com/microsoft/markitup#readme"
Issues = "https://github.com/microsoft/markitup/issues"
Source = "https://github.com/microsoft/markitup"
[tool.hatch.version]
path = "src/markitdown_mcp/__about__.py"
path = "src/markitup_mcp/__about__.py"
[project.scripts]
markitdown-mcp = "markitdown_mcp.__main__:main"
markitup-mcp = "markitup_mcp.__main__:main"
[tool.hatch.envs.types]
extra-dependencies = [
"mypy>=1.0.0",
]
[tool.hatch.envs.types.scripts]
check = "mypy --install-types --non-interactive {args:src/markitdown_mcp tests}"
check = "mypy --install-types --non-interactive {args:src/markitup_mcp tests}"
[tool.coverage.run]
source_pkgs = ["markitdown-mcp", "tests"]
source_pkgs = ["markitup-mcp", "tests"]
branch = true
parallel = true
omit = [
"src/markitdown_mcp/__about__.py",
"src/markitup_mcp/__about__.py",
]
[tool.coverage.paths]
markitdown-mcp = ["src/markitdown_mcp", "*/markitdown-mcp/src/markitdown_mcp"]
tests = ["tests", "*/markitdown-mcp/tests"]
markitup-mcp = ["src/markitup_mcp", "*/markitup-mcp/src/markitup_mcp"]
tests = ["tests", "*/markitup-mcp/tests"]
[tool.coverage.report]
exclude_lines = [
@ -66,4 +66,4 @@ exclude_lines = [
]
[tool.hatch.build.targets.sdist]
only-include = ["src/markitdown_mcp"]
only-include = ["src/markitup_mcp"]

View file

@ -6,17 +6,17 @@ from mcp.server.sse import SseServerTransport
from starlette.requests import Request
from starlette.routing import Mount, Route
from mcp.server import Server
from markitdown import MarkItDown
from markitup import MarkItUp
import uvicorn
# Initialize FastMCP server for MarkItDown (SSE)
mcp = FastMCP("markitdown")
# Initialize FastMCP server for MarkItUp (SSE)
mcp = FastMCP("markitup")
@mcp.tool()
async def convert_to_markdown(uri: str) -> str:
"""Convert a resource described by an http:, https:, file: or data: URI to markdown"""
return MarkItDown().convert_uri(uri).markdown
return MarkItUp().convert_uri(uri).markdown
def create_starlette_app(mcp_server: Server, *, debug: bool = False) -> Starlette:
@ -49,7 +49,7 @@ def main():
mcp_server = mcp._mcp_server
parser = argparse.ArgumentParser(description="Run MCP SSE-based MarkItDown server")
parser = argparse.ArgumentParser(description="Run MCP SSE-based MarkItUp server")
parser.add_argument(
"--sse",

View file

@ -1,17 +1,17 @@
# MarkItDown Sample Plugin
# MarkItUp Sample Plugin
[![PyPI](https://img.shields.io/pypi/v/markitdown-sample-plugin.svg)](https://pypi.org/project/markitdown-sample-plugin/)
![PyPI - Downloads](https://img.shields.io/pypi/dd/markitdown-sample-plugin)
[![PyPI](https://img.shields.io/pypi/v/markitup-sample-plugin.svg)](https://pypi.org/project/markitup-sample-plugin/)
![PyPI - Downloads](https://img.shields.io/pypi/dd/markitup-sample-plugin)
[![Built by AutoGen Team](https://img.shields.io/badge/Built%20by-AutoGen%20Team-blue)](https://github.com/microsoft/autogen)
This project shows how to create a sample plugin for MarkItDown. The most important parts are as follows:
This project shows how to create a sample plugin for MarkItUp. The most important parts are as follows:
Next, implement your custom DocumentConverter:
```python
from typing import BinaryIO, Any
from markitdown import MarkItDown, DocumentConverter, DocumentConverterResult, StreamInfo
from markitup import MarkItUp, DocumentConverter, DocumentConverterResult, StreamInfo
class RtfConverter(DocumentConverter):
@ -51,22 +51,22 @@ Next, make sure your package implements and exports the following:
# The only supported version is 1 for now.
__plugin_interface_version__ = 1
# The main entrypoint for the plugin. This is called each time MarkItDown instances are created.
def register_converters(markitdown: MarkItDown, **kwargs):
# The main entrypoint for the plugin. This is called each time MarkItUp instances are created.
def register_converters(markitup: MarkItUp, **kwargs):
"""
Called during construction of MarkItDown instances to register converters provided by plugins.
Called during construction of MarkItUp instances to register converters provided by plugins.
"""
# Simply create and attach an RtfConverter instance
markitdown.register_converter(RtfConverter())
markitup.register_converter(RtfConverter())
```
Finally, create an entrypoint in the `pyproject.toml` file:
```toml
[project.entry-points."markitdown.plugin"]
sample_plugin = "markitdown_sample_plugin"
[project.entry-points."markitup.plugin"]
sample_plugin = "markitup_sample_plugin"
```
Here, the value of `sample_plugin` can be any key, but should ideally be the name of the plugin. The value is the fully qualified name of the package implementing the plugin.
@ -74,30 +74,30 @@ Here, the value of `sample_plugin` can be any key, but should ideally be the nam
## Installation
To use the plugin with MarkItDown, it must be installed. To install the plugin from the current directory use:
To use the plugin with MarkItUp, it must be installed. To install the plugin from the current directory use:
```bash
pip install -e .
```
Once the plugin package is installed, verify that it is available to MarkItDown by running:
Once the plugin package is installed, verify that it is available to MarkItUp by running:
```bash
markitdown --list-plugins
markitup --list-plugins
```
To use the plugin for a conversion use the `--use-plugins` flag. For example, to convert an RTF file:
```bash
markitdown --use-plugins path-to-file.rtf
markitup --use-plugins path-to-file.rtf
```
In Python, plugins can be enabled as follows:
```python
from markitdown import MarkItDown
from markitup import MarkItUp
md = MarkItDown(enable_plugins=True)
md = MarkItUp(enable_plugins=True)
result = md.convert("path-to-file.rtf")
print(result.text_content)
```

View file

@ -3,9 +3,9 @@ requires = ["hatchling"]
build-backend = "hatchling.build"
[project]
name = "markitdown-sample-plugin"
name = "markitup-sample-plugin"
dynamic = ["version"]
description = 'A sample plugin for the "markitdown" library.'
description = 'A sample plugin for the "markitup" library.'
readme = "README.md"
requires-python = ">=3.10"
license = "MIT"
@ -24,40 +24,40 @@ classifiers = [
"Programming Language :: Python :: Implementation :: PyPy",
]
dependencies = [
"markitdown>=0.1.0a1",
"markitup>=0.1.0a1",
"striprtf",
]
[project.urls]
Documentation = "https://github.com/microsoft/markitdown#readme"
Issues = "https://github.com/microsoft/markitdown/issues"
Source = "https://github.com/microsoft/markitdown"
Documentation = "https://github.com/microsoft/markitup#readme"
Issues = "https://github.com/microsoft/markitup/issues"
Source = "https://github.com/microsoft/markitup"
[tool.hatch.version]
path = "src/markitdown_sample_plugin/__about__.py"
path = "src/markitup_sample_plugin/__about__.py"
# IMPORTANT: MarkItDown will look for this entry point to find the plugin.
[project.entry-points."markitdown.plugin"]
sample_plugin = "markitdown_sample_plugin"
[project.entry-points."markitup.plugin"]
sample_plugin = "markitup_sample_plugin"
[tool.hatch.envs.types]
extra-dependencies = [
"mypy>=1.0.0",
]
[tool.hatch.envs.types.scripts]
check = "mypy --install-types --non-interactive {args:src/markitdown_sample_plugin tests}"
check = "mypy --install-types --non-interactive {args:src/markitup_sample_plugin tests}"
[tool.coverage.run]
source_pkgs = ["markitdown-sample-plugin", "tests"]
source_pkgs = ["markitup-sample-plugin", "tests"]
branch = true
parallel = true
omit = [
"src/markitdown_sample_plugin/__about__.py",
"src/markitup_sample_plugin/__about__.py",
]
[tool.coverage.paths]
markitdown-sample-plugin = ["src/markitdown_sample_plugin", "*/markitdown-sample-plugin/src/markitdown_sample_plugin"]
tests = ["tests", "*/markitdown-sample-plugin/tests"]
markitup-sample-plugin = ["src/markitup_sample_plugin", "*/markitup-sample-plugin/src/markitup_sample_plugin"]
tests = ["tests", "*/markitup-sample-plugin/tests"]
[tool.coverage.report]
exclude_lines = [
@ -67,4 +67,4 @@ exclude_lines = [
]
[tool.hatch.build.targets.sdist]
only-include = ["src/markitdown_sample_plugin"]
only-include = ["src/markitup_sample_plugin"]

View file

@ -2,8 +2,8 @@ import locale
from typing import BinaryIO, Any
from striprtf.striprtf import rtf_to_text
from markitdown import (
MarkItDown,
from markitup import (
MarkItUp,
DocumentConverter,
DocumentConverterResult,
StreamInfo,
@ -22,13 +22,13 @@ ACCEPTED_MIME_TYPE_PREFIXES = [
ACCEPTED_FILE_EXTENSIONS = [".rtf"]
def register_converters(markitdown: MarkItDown, **kwargs):
def register_converters(markitup: MarkItUp, **kwargs):
"""
Called during construction of MarkItDown instances to register converters provided by plugins.
Called during construction of MarkItUp instances to register converters provided by plugins.
"""
# Simply create and attach an RtfConverter instance
markitdown.register_converter(RtfConverter())
markitup.register_converter(RtfConverter())
class RtfConverter(DocumentConverter):

View file

@ -2,14 +2,14 @@
import os
import pytest
from markitdown import MarkItDown, StreamInfo
from markitdown_sample_plugin import RtfConverter
from markitup import MarkItUp, StreamInfo
from markitup_sample_plugin import RtfConverter
TEST_FILES_DIR = os.path.join(os.path.dirname(__file__), "test_files")
RTF_TEST_STRINGS = {
"This is a Sample RTF File",
"It is included to test if the MarkItDown sample plugin can correctly convert RTF files.",
"It is included to test if the MarkItUp sample plugin can correctly convert RTF files.",
}
@ -28,9 +28,9 @@ def test_converter() -> None:
assert test_string in result.text_content
def test_markitdown() -> None:
"""Tests that MarkItDown correctly loads the plugin."""
md = MarkItDown(enable_plugins=True)
def test_markitup() -> None:
"""Tests that MarkItUp correctly loads the plugin."""
md = MarkItUp(enable_plugins=True)
result = md.convert(os.path.join(TEST_FILES_DIR, "test.rtf"))
for test_string in RTF_TEST_STRINGS:
@ -40,5 +40,5 @@ def test_markitdown() -> None:
if __name__ == "__main__":
"""Runs this file's tests from the command line."""
test_converter()
test_markitdown()
test_markitup()
print("All tests passed.")

View file

@ -3,10 +3,9 @@ requires = ["hatchling"]
build-backend = "hatchling.build"
[project]
name = "markitdown"
name = "markitup"
dynamic = ["version"]
description = 'Utility tool for converting various files to Markdown'
readme = "README.md"
requires-python = ">=3.10"
license = "MIT"
keywords = []
@ -29,75 +28,53 @@ dependencies = [
"markdownify",
"magika~=0.6.1",
"charset-normalizer",
]
[project.optional-dependencies]
all = [
"python-magic>=0.4.27",
"python-pptx",
"mammoth",
"pandas",
"openpyxl",
"xlrd",
"lxml",
"pdfminer.six",
"olefile",
"pydub",
"SpeechRecognition",
"youtube-transcript-api~=1.0.0",
"azure-ai-documentintelligence",
"azure-identity"
"pymupdf>=1.25.5",
]
pptx = ["python-pptx"]
docx = ["mammoth", "lxml"]
xlsx = ["pandas", "openpyxl"]
xls = ["pandas", "xlrd"]
pdf = ["pdfminer.six"]
outlook = ["olefile"]
audio-transcription = ["pydub", "SpeechRecognition"]
youtube-transcription = ["youtube-transcript-api"]
az-doc-intel = ["azure-ai-documentintelligence", "azure-identity"]
[project.urls]
Documentation = "https://github.com/microsoft/markitdown#readme"
Issues = "https://github.com/microsoft/markitdown/issues"
Source = "https://github.com/microsoft/markitdown"
[tool.hatch.version]
path = "src/markitdown/__about__.py"
path = "src/markitup/__about__.py"
[project.scripts]
markitdown = "markitdown.__main__:main"
markitup = "markitup.__main__:main"
[tool.hatch.envs.default]
features = ["all"]
# No features needed since everything is installed by default
[tool.hatch.envs.hatch-test]
features = ["all"]
extra-dependencies = [
"openai",
]
[tool.hatch.envs.types]
features = ["all"]
extra-dependencies = [
"openai",
"mypy>=1.0.0",
]
[tool.hatch.envs.types.scripts]
check = "mypy --install-types --non-interactive --ignore-missing-imports {args:src/markitdown tests}"
check = "mypy --install-types --non-interactive --ignore-missing-imports {args:src/markitup tests}"
[tool.coverage.run]
source_pkgs = ["markitdown", "tests"]
source_pkgs = ["markitup", "tests"]
branch = true
parallel = true
omit = [
"src/markitdown/__about__.py",
"src/markitup/__about__.py",
]
[tool.coverage.paths]
markitdown = ["src/markitdown", "*/markitdown/src/markitdown"]
tests = ["tests", "*/markitdown/tests"]
markitup = ["src/markitup", "*/markitup/src/markitup"]
tests = ["tests", "*/markitup/tests"]
[tool.coverage.report]
exclude_lines = [
@ -107,4 +84,4 @@ exclude_lines = [
]
[tool.hatch.build.targets.sdist]
only-include = ["src/markitdown"]
only-include = ["src/markitup"]

View file

@ -3,15 +3,13 @@
# SPDX-License-Identifier: MIT
from .__about__ import __version__
from ._markitdown import (
MarkItDown,
PRIORITY_SPECIFIC_FILE_FORMAT,
PRIORITY_GENERIC_FILE_FORMAT,
from ._markitup import (
MarkItUp,
)
from ._base_converter import DocumentConverterResult, DocumentConverter
from ._stream_info import StreamInfo
from ._exceptions import (
MarkItDownException,
MarkItUpException,
MissingDependencyException,
FailedConversionAttempt,
FileConversionException,
@ -20,15 +18,13 @@ from ._exceptions import (
__all__ = [
"__version__",
"MarkItDown",
"MarkItUp",
"DocumentConverter",
"DocumentConverterResult",
"MarkItDownException",
"MarkItUpException",
"MissingDependencyException",
"FailedConversionAttempt",
"FileConversionException",
"UnsupportedFormatException",
"StreamInfo",
"PRIORITY_SPECIFIC_FILE_FORMAT",
"PRIORITY_GENERIC_FILE_FORMAT",
]

View file

@ -8,40 +8,40 @@ import locale
from textwrap import dedent
from importlib.metadata import entry_points
from .__about__ import __version__
from ._markitdown import MarkItDown, StreamInfo, DocumentConverterResult
from ._markitup import MarkItUp, StreamInfo, DocumentConverterResult
def main():
parser = argparse.ArgumentParser(
description="Convert various file formats to markdown.",
prog="markitdown",
prog="markitup",
formatter_class=argparse.RawDescriptionHelpFormatter,
usage=dedent(
"""
SYNTAX:
markitdown <OPTIONAL: FILENAME>
If FILENAME is empty, markitdown reads from stdin.
markitup <OPTIONAL: FILENAME>
If FILENAME is empty, markitup reads from stdin.
EXAMPLE:
markitdown example.pdf
markitup example.pdf
OR
cat example.pdf | markitdown
cat example.pdf | markitup
OR
markitdown < example.pdf
markitup < example.pdf
OR to save to a file use
markitdown example.pdf -o example.md
markitup example.pdf -o example.md
OR
markitdown example.pdf > example.md
markitup example.pdf > example.md
"""
).strip(),
)
@ -158,12 +158,12 @@ def main():
if args.list_plugins:
# List installed plugins, then exit
print("Installed MarkItDown 3rd-party Plugins:\n")
plugin_entry_points = list(entry_points(group="markitdown.plugin"))
print("Installed MarkItUp 3rd-party Plugins:\n")
plugin_entry_points = list(entry_points(group="markitup.plugin"))
if len(plugin_entry_points) == 0:
print(" * No 3rd-party plugins installed.")
print(
"\nFind plugins by searching for the hashtag #markitdown-plugin on GitHub.\n"
"\nFind plugins by searching for the hashtag #markitup-plugin on GitHub.\n"
)
else:
for entry_point in plugin_entry_points:
@ -181,20 +181,20 @@ def main():
elif args.filename is None:
_exit_with_error("Filename is required when using Document Intelligence.")
markitdown = MarkItDown(
markitup = MarkItUp(
enable_plugins=args.use_plugins, docintel_endpoint=args.endpoint
)
else:
markitdown = MarkItDown(enable_plugins=args.use_plugins)
markitup = MarkItUp(enable_plugins=args.use_plugins)
if args.filename is None:
result = markitdown.convert_stream(
result = markitup.convert_stream(
sys.stdin.buffer,
stream_info=stream_info,
keep_data_uris=args.keep_data_uris,
)
else:
result = markitdown.convert(
result = markitup.convert(
args.filename, stream_info=stream_info, keep_data_uris=args.keep_data_uris
)

View file

@ -1,8 +1,9 @@
import os
import tempfile
from warnings import warn
from typing import Any, Union, BinaryIO, Optional, List
from typing import Any, Union, BinaryIO, Optional, List, Dict
from ._stream_info import StreamInfo
import re
class DocumentConverterResult:
@ -26,6 +27,61 @@ class DocumentConverterResult:
"""
self.markdown = markdown
self.title = title
def to_llm(self) -> List[Dict[str, Any]]:
"""
Convert markdown with base64 images to a format compatible with OpenAI's API.
This function parses the markdown content, extracting text and images in their
original order, and returns a list of content elements in OpenAI's format.
Returns:
List[Dict[str, Any]]: A list of dictionaries representing the content elements
(text and images) in their original order.
"""
# Pattern to match markdown image syntax with base64 data
pattern = r'!\[(.*?)\]\(data:(.*?);base64,(.*?)\)'
content = []
last_end = 0
# Process the document sequentially to maintain order
for match in re.finditer(pattern, self.markdown):
# Add the text before this image if any
if match.start() > last_end:
text_chunk = self.markdown[last_end:match.start()].strip()
if text_chunk:
content.append({
"type": "text",
"text": text_chunk
})
# Extract image data
alt_text, content_type, b64_data = match.groups()
# Add the image
content.append({
"type": "image",
"image_url": {
"url": f"data:{content_type};base64,{b64_data}"
},
"alt_text": alt_text
})
last_end = match.end()
# Add any remaining text after the last image
if last_end < len(self.markdown):
text_chunk = self.markdown[last_end:].strip()
if text_chunk:
content.append({
"type": "text",
"text": text_chunk
})
return content
@property
def text_content(self) -> str:
@ -45,45 +101,6 @@ class DocumentConverterResult:
class DocumentConverter:
"""Abstract superclass of all DocumentConverters."""
def accepts(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> bool:
"""
Return a quick determination on if the converter should attempt converting the document.
This is primarily based `stream_info` (typically, `stream_info.mimetype`, `stream_info.extension`).
In cases where the data is retrieved via HTTP, the `steam_info.url` might also be referenced to
make a determination (e.g., special converters for Wikipedia, YouTube etc).
Finally, it is conceivable that the `stream_info.filename` might be used to in cases
where the filename is well-known (e.g., `Dockerfile`, `Makefile`, etc)
NOTE: The method signature is designed to match that of the convert() method. This provides some
assurance that, if accepts() returns True, the convert() method will also be able to handle the document.
IMPORTANT: In rare cases, (e.g., OutlookMsgConverter) we need to read more from the stream to make a final
determination. Read operations inevitably advances the position in file_stream. In these case, the position
MUST be reset it MUST be reset before returning. This is because the convert() method may be called immediately
after accepts(), and will expect the file_stream to be at the original position.
E.g.,
cur_pos = file_stream.tell() # Save the current position
data = file_stream.read(100) # ... peek at the first 100 bytes, etc.
file_stream.seek(cur_pos) # Reset the position to the original position
Prameters:
- file_stream: The file-like object to convert. Must support seek(), tell(), and read() methods.
- stream_info: The StreamInfo object containing metadata about the file (mimetype, extension, charset, set)
- kwargs: Additional keyword arguments for the converter.
Returns:
- bool: True if the converter can handle the document, False otherwise.
"""
raise NotImplementedError(
f"The subclass, {type(self).__name__}, must implement the accepts() method to determine if they can handle the document."
)
def convert(
self,
file_stream: BinaryIO,

View file

@ -1,24 +1,24 @@
from typing import Optional, List, Any
MISSING_DEPENDENCY_MESSAGE = """{converter} recognized the input as a potential {extension} file, but the dependencies needed to read {extension} files have not been installed. To resolve this error, include the optional dependency [{feature}] or [all] when installing MarkItDown. For example:
MISSING_DEPENDENCY_MESSAGE = """{converter} recognized the input as a potential {extension} file, but the dependencies needed to read {extension} files have not been installed. To resolve this error, include the optional dependency [{feature}] or [all] when installing MarkItUp. For example:
* pip install markitdown[{feature}]
* pip install markitdown[all]
* pip install markitdown[{feature}, ...]
* pip install markitup[{feature}]
* pip install markitup[all]
* pip install markitup[{feature}, ...]
* etc."""
class MarkItDownException(Exception):
class MarkItUpException(Exception):
"""
Base exception class for MarkItDown.
Base exception class for MarkItUp.
"""
pass
class MissingDependencyException(MarkItDownException):
class MissingDependencyException(MarkItUpException):
"""
Converters shipped with MarkItDown may depend on optional
Converters shipped with MarkItUp may depend on optional
dependencies. This exception is thrown when a converter's
convert() method is called, but the required dependency is not
installed. This is not necessarily a fatal error, as the converter
@ -31,7 +31,7 @@ class MissingDependencyException(MarkItDownException):
pass
class UnsupportedFormatException(MarkItDownException):
class UnsupportedFormatException(MarkItUpException):
"""
Thrown when no suitable converter was found for the given file.
"""
@ -49,7 +49,7 @@ class FailedConversionAttempt(object):
self.exc_info = exc_info
class FileConversionException(MarkItDownException):
class FileConversionException(MarkItUpException):
"""
Thrown when a suitable converter was found, but the conversion
process fails for any reason.

View file

@ -0,0 +1,100 @@
from typing import Any, List, Dict, Optional, Union, BinaryIO
from pathlib import Path
from urllib.parse import urlparse
from warnings import warn
import magic
from ._stream_info import StreamInfo
from .converters import (
PlainTextConverter,
HtmlConverter,
PdfConverter,
DocxConverter,
XlsxConverter,
XlsConverter,
PptxConverter,
# AudioConverter,
CsvConverter,
)
from ._base_converter import DocumentConverter, DocumentConverterResult
from ._exceptions import (
FileConversionException,
UnsupportedFormatException,
FailedConversionAttempt,
)
class MarkItUp:
"""(In preview) An extremely simple text-based document reader, suitable for LLM use.
This reader will convert common file-types or webpages to Markdown."""
def __init__(
self,
config: Optional[Dict[str, Any]] = None,
):
self.config = config
def convert(self, stream: BinaryIO) -> Dict[DocumentConverterResult, StreamInfo]:
stream_info: StreamInfo = self._get_stream_info(stream)
# Deal with unsupported file types
match stream_info.category:
case "ppt":
raise UnsupportedFormatException(".ppt files are not supported, try .pptx instead")
case "other":
raise UnsupportedFormatException(f"{stream_info.magic_type} files are not supported")
try:
match stream_info.category:
case "text":
return PlainTextConverter().convert(stream, stream_info), stream_info
case "pptx":
return PptxConverter().convert(stream, stream_info), stream_info
case "pdf":
return PdfConverter().convert(stream, stream_info), stream_info
except FailedConversionAttempt:
raise FileConversionException(f"Failed to convert file of type {stream_info.magic_type}")
return stream_info
def _get_stream_info(self, byte_stream: BinaryIO) -> StreamInfo:
original_position = byte_stream.tell()
# Reset stream position to beginning
byte_stream.seek(0)
# Get file content for analysis
file_content = byte_stream.read()
# Use python-magic to determine file type based on content
magic_type = magic.from_buffer(file_content, mime=True)
# Determine file category based on magic_type
if magic_type.startswith("image/"):
category = "image"
elif magic_type.startswith("audio/"):
category = "audio"
elif magic_type.startswith("video/"):
category = "video"
elif magic_type.startswith("application/vnd.ms-excel"):
category = 'xls'
elif magic_type.startswith("application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"):
category = "xlsx"
elif magic_type.startswith("application/vnd.ms-powerpoint"):
category = 'ppt'
elif magic_type == "application/vnd.openxmlformats-officedocument.presentationml.presentation":
category = "pptx"
elif magic_type.startswith("application/msword"):
category = 'doc'
elif magic_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
category = "docx"
elif magic_type == "application/pdf":
category = "pdf"
elif magic_type.startswith("text/"):
category = "text"
else:
category = "other"
byte_stream.seek(original_position)
return StreamInfo(magic_type=magic_type, category=category)

View file

@ -0,0 +1,8 @@
from dataclasses import dataclass, asdict
from typing import Optional
@dataclass
class StreamInfo:
magic_type: Optional[str] = None
category: Optional[str] = None

View file

@ -0,0 +1,102 @@
import os
from io import BytesIO
from markitup._stream_info import StreamInfo
import magic
def read_files_to_bytestreams(folder_path="packages/markitup/tests/test_files"):
"""
Reads all files from the specified folder into BytesIO objects.
Args:
folder_path (str): Path to the folder containing files
Returns:
dict: Dictionary with filenames as keys and BytesIO objects as values
"""
byte_streams = {}
# Check if folder exists
if not os.path.exists(folder_path):
raise FileNotFoundError(f"Folder '{folder_path}' not found")
# Iterate through all files in the folder
for filename in sorted(os.listdir(folder_path)):
file_path = os.path.join(folder_path, filename)
# Check if it's a file (not a subdirectory)
if os.path.isfile(file_path):
# Read file in binary mode
with open(file_path, "rb") as f:
# Create BytesIO object with file content
file_bytes = BytesIO(f.read())
# Add to dictionary with filename as key
byte_streams[filename] = file_bytes
# Reset BytesIO position to beginning
file_bytes.seek(0)
return byte_streams
def detect_file_types(file_dict):
"""
Detects file types for a dictionary of {filename: BytesIO} pairs
using only magic type (content-based detection)
Args:
file_dict (dict): Dictionary with filenames as keys and BytesIO objects as values
Returns:
dict: Dictionary with filenames as keys and file type information as values
"""
result = {}
for filename, byte_stream in file_dict.items():
# Get the original position to reset later
original_position = byte_stream.tell()
# Reset stream position to beginning
byte_stream.seek(0)
# Get file content for analysis
file_content = byte_stream.read()
# Use python-magic to determine file type based on content
magic_type = magic.from_buffer(file_content, mime=True)
# Determine file category based on magic_type
if magic_type.startswith("image/"):
category = "image"
elif magic_type.startswith("audio/"):
category = "audio"
elif magic_type.startswith("video/"):
category = "video"
elif (
magic_type.startswith("application/vnd.ms-excel")
or magic_type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
):
category = "xls"
elif (
magic_type.startswith("application/vnd.ms-powerpoint")
or magic_type == "application/vnd.openxmlformats-officedocument.presentationml.presentation"
):
category = "ppt"
elif (
magic_type.startswith("application/msword")
or magic_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
):
category = "doc"
elif magic_type == "application/pdf":
category = "pdf"
elif magic_type.startswith("text/"):
category = "text"
else:
category = "other"
# Store the results
result[filename] = StreamInfo(magic_type=magic_type, category=category)
# Reset stream position
byte_stream.seek(original_position)
return result

View file

@ -4,30 +4,19 @@
from ._plain_text_converter import PlainTextConverter
from ._html_converter import HtmlConverter
from ._rss_converter import RssConverter
from ._wikipedia_converter import WikipediaConverter
from ._youtube_converter import YouTubeConverter
from ._ipynb_converter import IpynbConverter
from ._bing_serp_converter import BingSerpConverter
from ._pdf_converter import PdfConverter
from ._docx_converter import DocxConverter
from ._xlsx_converter import XlsxConverter, XlsConverter
from ._pptx_converter import PptxConverter
from ._image_converter import ImageConverter
from ._audio_converter import AudioConverter
from ._outlook_msg_converter import OutlookMsgConverter
from ._zip_converter import ZipConverter
from ._doc_intel_converter import (
DocumentIntelligenceConverter,
DocumentIntelligenceFileType,
)
from ._epub_converter import EpubConverter
# from ._audio_converter import AudioConverter
from ._csv_converter import CsvConverter
from ._markdownify import _CustomMarkdownify
__all__ = [
"PlainTextConverter",
"HtmlConverter",
"RssConverter",
"_CustomMarkdownify",
"WikipediaConverter",
"YouTubeConverter",
"IpynbConverter",
@ -38,7 +27,7 @@ __all__ = [
"XlsConverter",
"PptxConverter",
"ImageConverter",
"AudioConverter",
# "AudioConverter",
"OutlookMsgConverter",
"ZipConverter",
"DocumentIntelligenceConverter",

View file

@ -2,7 +2,6 @@ import io
from typing import Any, BinaryIO, Optional
from ._exiftool import exiftool_metadata
from ._transcribe_audio import transcribe_audio
from .._base_converter import DocumentConverter, DocumentConverterResult
from .._stream_info import StreamInfo
from .._exceptions import MissingDependencyException

View file

@ -6,12 +6,12 @@ from .._base_converter import DocumentConverter, DocumentConverterResult
from .._stream_info import StreamInfo
from ._markdownify import _CustomMarkdownify
ACCEPTED_MIME_TYPE_PREFIXES = [
ACCEPTED_MAGIC_TYPE_PREFIXES = [
"text/html",
"application/xhtml",
]
ACCEPTED_FILE_EXTENSIONS = [
ACCEPTED_FILE_CATEGORY = [
".html",
".htm",
]
@ -19,25 +19,6 @@ ACCEPTED_FILE_EXTENSIONS = [
class HtmlConverter(DocumentConverter):
"""Anything with content type text/html"""
def accepts(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> bool:
mimetype = (stream_info.mimetype or "").lower()
extension = (stream_info.extension or "").lower()
if extension in ACCEPTED_FILE_EXTENSIONS:
return True
for prefix in ACCEPTED_MIME_TYPE_PREFIXES:
if mimetype.startswith(prefix):
return True
return False
def convert(
self,
file_stream: BinaryIO,
@ -45,7 +26,7 @@ class HtmlConverter(DocumentConverter):
**kwargs: Any, # Options to pass to the converter
) -> DocumentConverterResult:
# Parse the stream
encoding = "utf-8" if stream_info.charset is None else stream_info.charset
encoding = "utf-8"
soup = BeautifulSoup(file_stream, "html.parser", from_encoding=encoding)
# Remove javascript and style blocks
@ -81,10 +62,8 @@ class HtmlConverter(DocumentConverter):
return self.convert(
file_stream=io.BytesIO(html_content.encode("utf-8")),
stream_info=StreamInfo(
mimetype="text/html",
extension=".html",
charset="utf-8",
url=url,
magic_type="text/html",
category="text",
),
**kwargs,
)

View file

@ -108,4 +108,4 @@ class _CustomMarkdownify(markdownify.MarkdownConverter):
return "![%s](%s%s)" % (alt, src, title_part)
def convert_soup(self, soup: Any) -> str:
return super().convert_soup(soup) # type: ignore
return super().convert_soup(soup) # type: ignore

View file

@ -0,0 +1,62 @@
from typing import BinaryIO, Any
import io
import base64
from .._base_converter import DocumentConverter, DocumentConverterResult
from .._stream_info import StreamInfo
import fitz
class PdfConverter(DocumentConverter):
"""
Converts PDFs to Markdown with embedded images.
"""
def convert(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> DocumentConverterResult:
# Create a document object from the stream
doc = fitz.open(stream=file_stream, filetype="pdf")
# Extract text and images from all pages
markdown_content = ""
image_count = 0
for page_num in range(len(doc)):
page = doc.load_page(page_num)
# Get text with the default "text" mode which gives plain text
page_text = page.get_text("text")
# Add page marker
markdown_content += f"\n\n## Page {page_num + 1}\n\n"
markdown_content += page_text + "\n\n"
# Extract images from the page
image_list = page.get_images(full=True)
for img_index, img_info in enumerate(image_list):
xref = img_info[0] # Get the image reference
base_image = doc.extract_image(xref)
if base_image:
image_bytes = base_image["image"]
image_ext = base_image["ext"]
try:
# Convert image to base64 for markdown embedding
img_base64 = base64.b64encode(image_bytes).decode('utf-8')
# Add image to markdown with a unique identifier
image_count += 1
markdown_content += f"![Image {image_count}](data:image/{image_ext};base64,{img_base64})\n\n"
except Exception as e:
markdown_content += f"*[Error processing image {image_count}: {str(e)}]*\n\n"
# Close the document to free resources
doc.close()
print(markdown_content)
return DocumentConverterResult(
markdown=markdown_content,
)

View file

@ -0,0 +1,16 @@
from typing import BinaryIO, Any
from charset_normalizer import from_bytes
from .._base_converter import DocumentConverter, DocumentConverterResult
from .._stream_info import StreamInfo
class PlainTextConverter(DocumentConverter):
"""Anything with content type text/plain"""
def convert(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> DocumentConverterResult:
text_content = str(from_bytes(file_stream.read()).best())
return DocumentConverterResult(markdown=text_content)

View file

@ -9,26 +9,16 @@ from typing import BinaryIO, Any
from operator import attrgetter
from ._html_converter import HtmlConverter
from ._llm_caption import llm_caption
from .._base_converter import DocumentConverter, DocumentConverterResult
from .._stream_info import StreamInfo
from .._exceptions import MissingDependencyException, MISSING_DEPENDENCY_MESSAGE
# Try loading optional (but in this case, required) dependencies
# Save reporting of any exceptions for later
_dependency_exc_info = None
try:
import pptx
except ImportError:
# Preserve the error and stack trace for later
_dependency_exc_info = sys.exc_info()
import pptx
ACCEPTED_MIME_TYPE_PREFIXES = [
ACCEPTED_MAGIC_TYPE_PREFIXES = [
"application/vnd.openxmlformats-officedocument.presentationml",
]
ACCEPTED_FILE_EXTENSIONS = [".pptx"]
ACCEPTED_FILE_CATEGORY = [".pptx"]
class PptxConverter(DocumentConverter):
@ -40,43 +30,12 @@ class PptxConverter(DocumentConverter):
super().__init__()
self._html_converter = HtmlConverter()
def accepts(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> bool:
mimetype = (stream_info.mimetype or "").lower()
extension = (stream_info.extension or "").lower()
if extension in ACCEPTED_FILE_EXTENSIONS:
return True
for prefix in ACCEPTED_MIME_TYPE_PREFIXES:
if mimetype.startswith(prefix):
return True
return False
def convert(
self,
file_stream: BinaryIO,
stream_info: StreamInfo,
**kwargs: Any, # Options to pass to the converter
) -> DocumentConverterResult:
# Check the dependencies
if _dependency_exc_info is not None:
raise MissingDependencyException(
MISSING_DEPENDENCY_MESSAGE.format(
converter=type(self).__name__,
extension=".pptx",
feature="pptx",
)
) from _dependency_exc_info[
1
].with_traceback( # type: ignore[union-attr]
_dependency_exc_info[2]
)
# Perform the conversion
presentation = pptx.Presentation(file_stream)
@ -95,39 +54,8 @@ class PptxConverter(DocumentConverter):
if self._is_picture(shape):
# https://github.com/scanny/python-pptx/pull/512#issuecomment-1713100069
llm_description = ""
alt_text = ""
# Potentially generate a description using an LLM
llm_client = kwargs.get("llm_client")
llm_model = kwargs.get("llm_model")
if llm_client is not None and llm_model is not None:
# Prepare a file_stream and stream_info for the image data
image_filename = shape.image.filename
image_extension = None
if image_filename:
image_extension = os.path.splitext(image_filename)[1]
image_stream_info = StreamInfo(
mimetype=shape.image.content_type,
extension=image_extension,
filename=image_filename,
)
image_stream = io.BytesIO(shape.image.blob)
# Caption the image
try:
llm_description = llm_caption(
image_stream,
image_stream_info,
client=llm_client,
model=llm_model,
prompt=kwargs.get("llm_prompt"),
)
except Exception:
# Unable to generate a description
pass
# Also grab any description embedded in the deck
try:
alt_text = shape._element._nvXxPr.cNvPr.attrib.get("descr", "")
@ -136,20 +64,17 @@ class PptxConverter(DocumentConverter):
pass
# Prepare the alt, escaping any special characters
alt_text = "\n".join([llm_description, alt_text]) or shape.name
alt_text = "\n".join([alt_text]) or shape.name
alt_text = re.sub(r"[\r\n\[\]]", " ", alt_text)
alt_text = re.sub(r"\s+", " ", alt_text).strip()
# If keep_data_uris is True, use base64 encoding for images
if kwargs.get("keep_data_uris", False):
blob = shape.image.blob
content_type = shape.image.content_type or "image/png"
b64_string = base64.b64encode(blob).decode("utf-8")
md_content += f"\n![{alt_text}](data:{content_type};base64,{b64_string})\n"
else:
# A placeholder name
filename = re.sub(r"\W", "", shape.name) + ".jpg"
md_content += "\n![" + alt_text + "](" + filename + ")\n"
blob = shape.image.blob
content_type = shape.image.content_type or "image/png"
b64_string = base64.b64encode(blob).decode("utf-8")
md_content += f"\n![{alt_text}](data:{content_type};base64,{b64_string})\n"
# Tables
if self._is_table(shape):

View file

Before

Width:  |  Height:  |  Size: 463 KiB

After

Width:  |  Height:  |  Size: 463 KiB

Binary file not shown.

Binary file not shown.

View file

@ -0,0 +1,4 @@
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
This sample TXT file is provided by Sample-Files.com. Visit us for more sample files and resources.

Some files were not shown because too many files have changed in this diff Show more