d2/d2layouts/d2cycle/layout.go

573 lines
17 KiB
Go
Raw Normal View History

2025-02-21 17:05:31 +00:00
// package d2cycle
// import (
// "context"
// "math"
// "oss.terrastruct.com/d2/d2graph"
// "oss.terrastruct.com/d2/lib/geo"
// "oss.terrastruct.com/d2/lib/label"
// "oss.terrastruct.com/util-go/go2"
// )
// const (
// MIN_RADIUS = 200
// PADDING = 20
// MIN_SEGMENT_LEN = 10
// ARC_STEPS = 30 // high resolution for smooth arcs
// )
// // Layout arranges nodes in a circle and routes edges with properly clipped arcs
// func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
// objects := g.Root.ChildrenArray
// if len(objects) == 0 {
// return nil
// }
// // Position labels and icons first
// for _, obj := range g.Objects {
// positionLabelsIcons(obj)
// }
// // Calculate layout parameters
// nodeCircleRadius := calculateRadius(objects)
// maxNodeSize := 0.0
// for _, obj := range objects {
// size := math.Max(obj.Width, obj.Height)
// maxNodeSize = math.Max(maxNodeSize, size)
// }
// // Position nodes in circle
// positionObjects(objects, nodeCircleRadius)
// // Create properly clipped edge arcs
// for _, edge := range g.Edges {
// createCircularArc(edge, nodeCircleRadius, maxNodeSize)
// }
// return nil
// }
// func calculateRadius(objects []*d2graph.Object) float64 {
// numObjects := float64(len(objects))
// maxSize := 0.0
// for _, obj := range objects {
// size := math.Max(obj.Width, obj.Height)
// maxSize = math.Max(maxSize, size)
// }
// minRadius := (maxSize/2 + PADDING) / math.Sin(math.Pi/numObjects)
// return math.Max(minRadius, MIN_RADIUS)
// }
// func positionObjects(objects []*d2graph.Object, radius float64) {
// numObjects := float64(len(objects))
// angleOffset := -math.Pi / 2 // Start at top
// for i, obj := range objects {
// angle := angleOffset + (2*math.Pi*float64(i))/numObjects
// x := radius * math.Cos(angle)
// y := radius * math.Sin(angle)
// // Center object at calculated position
// obj.TopLeft = geo.NewPoint(
// x-obj.Width/2,
// y-obj.Height/2,
// )
// }
// }
// func createCircularArc(edge *d2graph.Edge, nodeCircleRadius, maxNodeSize float64) {
// if edge.Src == nil || edge.Dst == nil {
// return
// }
// srcCenter := edge.Src.Center()
// dstCenter := edge.Dst.Center()
// // Calculate arc radius outside node circle
// arcRadius := nodeCircleRadius + maxNodeSize/2 + PADDING
// // Calculate angles for arc endpoints
// srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
// dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
// if dstAngle < srcAngle {
// dstAngle += 2 * math.Pi
// }
// // Generate arc path points
// path := make([]*geo.Point, 0, ARC_STEPS+1)
// for i := 0; i <= ARC_STEPS; i++ {
// t := float64(i) / ARC_STEPS
// angle := srcAngle + t*(dstAngle-srcAngle)
// x := arcRadius * math.Cos(angle)
// y := arcRadius * math.Sin(angle)
// path = append(path, geo.NewPoint(x, y))
// }
// // Set exact endpoints (will be clipped later)
// path[0] = srcCenter
// path[len(path)-1] = dstCenter
// // Clip path to node borders
// edge.Route = path
// startIndex, endIndex := edge.TraceToShape(edge.Route, 0, len(edge.Route)-1)
// if startIndex < endIndex {
// edge.Route = edge.Route[startIndex : endIndex+1]
// }
// edge.IsCurve = true
// }
// // clampPointOutsideBox walks forward from 'startIdx' until the path segment
// // leaves the bounding box. Then it sets path[startIdx] to the intersection.
// // If we never find it, we return (startIdx, path[startIdx]) meaning we can't clamp.
// func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *geo.Point) {
// if startIdx >= len(path)-1 {
// return startIdx, path[startIdx]
// }
// // If path[startIdx] is outside, no clamp needed
// if !boxContains(box, path[startIdx]) {
// return startIdx, path[startIdx]
// }
// // Walk forward looking for outside
// for i := startIdx + 1; i < len(path); i++ {
// insideNext := boxContains(box, path[i])
// if insideNext {
// // still inside -> keep going
// continue
// }
// // crossing from inside to outside between path[i-1], path[i]
// seg := geo.NewSegment(path[i-1], path[i])
// inters := boxIntersections(box, *seg)
// if len(inters) > 0 {
// // use first intersection
// return i, inters[0]
// }
// // fallback => no intersection found
// return i, path[i]
// }
// // entire remainder is inside, so we can't clamp
// // Just return the end
// last := len(path) - 1
// return last, path[last]
// }
// // clampPointOutsideBoxReverse scans backward from endIdx while path[j] is in the box.
// // Once we find crossing (outside→inside), we return (j, intersection).
// func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (int, *geo.Point) {
// if endIdx <= 0 {
// return endIdx, path[endIdx]
// }
// if !boxContains(box, path[endIdx]) {
// // already outside
// return endIdx, path[endIdx]
// }
// for j := endIdx - 1; j >= 0; j-- {
// if boxContains(box, path[j]) {
// continue
// }
// // crossing from outside -> inside between path[j], path[j+1]
// seg := geo.NewSegment(path[j], path[j+1])
// inters := boxIntersections(box, *seg)
// if len(inters) > 0 {
// return j, inters[0]
// }
// return j, path[j]
// }
// // entire path inside
// return 0, path[0]
// }
// // Helper if your geo.Box doesnt implement Contains()
// func boxContains(b *geo.Box, p *geo.Point) bool {
// // typical bounding-box check
// return p.X >= b.TopLeft.X &&
// p.X <= b.TopLeft.X+b.Width &&
// p.Y >= b.TopLeft.Y &&
// p.Y <= b.TopLeft.Y+b.Height
// }
// // Helper if your geo.Box doesnt implement Intersections(geo.Segment) yet
// func boxIntersections(b *geo.Box, seg geo.Segment) []*geo.Point {
// // We'll assume d2's standard geo.Box has a built-in Intersections(*Segment) method.
// // If not, implement manually. For example, checking each of the 4 edges:
// // left, right, top, bottom
// // For simplicity, if you do have b.Intersections(...) you can just do:
// // return b.Intersections(seg)
// return b.Intersections(seg)
// // If you don't have that, you'd code the line-rect intersection yourself.
// }
// // positionLabelsIcons is basically your logic that sets default label/icon positions if needed
// func positionLabelsIcons(obj *d2graph.Object) {
// // If there's an icon but no icon position, give it a default
// if obj.Icon != nil && obj.IconPosition == nil {
// if len(obj.ChildrenArray) > 0 {
// obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
// if obj.LabelPosition == nil {
// obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
// return
// }
// } else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
// obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
// } else {
// obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
// }
// }
// // If there's a label but no label position, give it a default
// if obj.HasLabel() && obj.LabelPosition == nil {
// if len(obj.ChildrenArray) > 0 {
// obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
// } else if obj.HasOutsideBottomLabel() {
// obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
// } else if obj.Icon != nil {
// obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
// } else {
// obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
// }
// // If the label is bigger than the shape, fallback to outside positions
// if float64(obj.LabelDimensions.Width) > obj.Width ||
// float64(obj.LabelDimensions.Height) > obj.Height {
// if len(obj.ChildrenArray) > 0 {
// obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
// } else {
// obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
// }
// }
// }
// }
2025-02-21 16:34:23 +00:00
package d2cycle
import (
"context"
"math"
"oss.terrastruct.com/d2/d2graph"
"oss.terrastruct.com/d2/lib/geo"
"oss.terrastruct.com/d2/lib/label"
"oss.terrastruct.com/util-go/go2"
)
const (
2025-02-21 17:12:10 +00:00
MIN_RADIUS = 200
PADDING = 20
2025-02-21 17:20:01 +00:00
ARC_STEPS = 60
2025-02-21 16:34:23 +00:00
)
func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
objects := g.Root.ChildrenArray
if len(objects) == 0 {
return nil
}
for _, obj := range g.Objects {
positionLabelsIcons(obj)
}
2025-02-21 17:20:01 +00:00
// Calculate layout parameters
baseRadius, maxNodeSize := calculateLayoutParams(objects)
2025-02-21 17:05:31 +00:00
positionObjects(objects, baseRadius)
2025-02-21 16:34:23 +00:00
2025-02-21 17:20:01 +00:00
// Create edges with boundary-perfect arcs
2025-02-21 16:34:23 +00:00
for _, edge := range g.Edges {
2025-02-21 17:20:01 +00:00
createBoundaryArc(edge, baseRadius, maxNodeSize)
2025-02-21 16:34:23 +00:00
}
return nil
}
2025-02-21 17:20:01 +00:00
func calculateLayoutParams(objects []*d2graph.Object) (float64, float64) {
2025-02-21 17:05:31 +00:00
numNodes := float64(len(objects))
2025-02-21 16:34:23 +00:00
maxSize := 0.0
for _, obj := range objects {
size := math.Max(obj.Width, obj.Height)
maxSize = math.Max(maxSize, size)
}
2025-02-21 17:12:10 +00:00
minRadius := (maxSize/2 + PADDING) / math.Sin(math.Pi/numNodes)
2025-02-21 17:20:01 +00:00
return math.Max(minRadius, MIN_RADIUS), maxSize
2025-02-21 16:34:23 +00:00
}
func positionObjects(objects []*d2graph.Object, radius float64) {
numObjects := float64(len(objects))
2025-02-21 17:05:31 +00:00
angleOffset := -math.Pi / 2
2025-02-21 16:34:23 +00:00
for i, obj := range objects {
angle := angleOffset + (2*math.Pi*float64(i))/numObjects
x := radius * math.Cos(angle)
y := radius * math.Sin(angle)
2025-02-21 17:20:01 +00:00
// Center object at calculated position
2025-02-21 16:34:23 +00:00
obj.TopLeft = geo.NewPoint(
x-obj.Width/2,
y-obj.Height/2,
)
}
}
2025-02-21 17:20:01 +00:00
func createBoundaryArc(edge *d2graph.Edge, baseRadius, maxNodeSize float64) {
2025-02-21 17:05:31 +00:00
if edge.Src == nil || edge.Dst == nil || edge.Src == edge.Dst {
2025-02-21 16:34:23 +00:00
return
}
2025-02-21 17:20:01 +00:00
// Calculate arc radius outside node boundaries
arcRadius := baseRadius + maxNodeSize/2 + PADDING
2025-02-21 16:34:23 +00:00
srcCenter := edge.Src.Center()
dstCenter := edge.Dst.Center()
2025-02-21 17:12:10 +00:00
layoutCenter := geo.NewPoint(0, 0)
2025-02-21 16:34:23 +00:00
2025-02-21 17:20:01 +00:00
// Calculate angles with shortest path
2025-02-21 17:12:10 +00:00
startAngle := math.Atan2(srcCenter.Y-layoutCenter.Y, srcCenter.X-layoutCenter.X)
endAngle := math.Atan2(dstCenter.Y-layoutCenter.Y, dstCenter.X-layoutCenter.X)
2025-02-21 17:05:31 +00:00
angleDiff := endAngle - startAngle
2025-02-21 17:20:01 +00:00
// Normalize angle difference
2025-02-21 17:05:31 +00:00
if angleDiff < 0 {
angleDiff += 2 * math.Pi
}
if angleDiff > math.Pi {
angleDiff -= 2 * math.Pi
2025-02-21 16:34:23 +00:00
}
2025-02-21 17:20:01 +00:00
// Generate arc points
2025-02-21 16:34:23 +00:00
path := make([]*geo.Point, 0, ARC_STEPS+1)
for i := 0; i <= ARC_STEPS; i++ {
t := float64(i) / ARC_STEPS
2025-02-21 17:20:01 +00:00
angle := startAngle + t*angleDiff
x := layoutCenter.X + arcRadius*math.Cos(angle)
y := layoutCenter.Y + arcRadius*math.Sin(angle)
2025-02-21 16:34:23 +00:00
path = append(path, geo.NewPoint(x, y))
}
2025-02-21 17:20:01 +00:00
// Clip to actual node boundaries
2025-02-21 16:34:23 +00:00
edge.Route = path
2025-02-21 17:05:31 +00:00
startIdx, endIdx := edge.TraceToShape(edge.Route, 0, len(edge.Route)-1)
2025-02-21 16:34:23 +00:00
2025-02-21 17:05:31 +00:00
// Maintain smooth arc after clipping
if startIdx < endIdx {
edge.Route = edge.Route[startIdx : endIdx+1]
2025-02-21 17:12:10 +00:00
// Ensure minimal points for smooth rendering
2025-02-21 17:05:31 +00:00
if len(edge.Route) < 3 {
edge.Route = []*geo.Point{path[0], path[len(path)-1]}
2025-02-21 16:34:23 +00:00
}
}
2025-02-21 17:05:31 +00:00
edge.IsCurve = true
2025-02-21 16:34:23 +00:00
}
func positionLabelsIcons(obj *d2graph.Object) {
// If there's an icon but no icon position, give it a default
if obj.Icon != nil && obj.IconPosition == nil {
if len(obj.ChildrenArray) > 0 {
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
if obj.LabelPosition == nil {
obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
return
}
} else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
} else {
obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
}
2025-02-21 17:12:10 +00:00
// If there's a label but no label position, give it a default
2025-02-21 16:34:23 +00:00
if obj.HasLabel() && obj.LabelPosition == nil {
if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else if obj.HasOutsideBottomLabel() {
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
} else if obj.Icon != nil {
obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
} else {
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
2025-02-21 17:12:10 +00:00
// If the label is bigger than the shape, fallback to outside positions
2025-02-21 16:34:23 +00:00
if float64(obj.LabelDimensions.Width) > obj.Width ||
float64(obj.LabelDimensions.Height) > obj.Height {
if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else {
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
}
}
}
2025-02-21 17:05:31 +00:00
}
2025-02-21 17:20:01 +00:00
func boxContains(b *geo.Box, p *geo.Point) bool {
return p.X >= b.TopLeft.X &&
p.X <= b.TopLeft.X+b.Width &&
p.Y >= b.TopLeft.Y &&
p.Y <= b.TopLeft.Y+b.Height
}
func boxIntersections(b *geo.Box, seg geo.Segment) []*geo.Point {
return b.Intersections(seg)
}
2025-02-21 17:12:10 +00:00
// package d2cycle
2025-02-21 17:05:31 +00:00
2025-02-21 17:12:10 +00:00
// import (
// "context"
// "math"
2025-02-21 17:05:31 +00:00
2025-02-21 17:12:10 +00:00
// "oss.terrastruct.com/d2/d2graph"
// "oss.terrastruct.com/d2/lib/geo"
// "oss.terrastruct.com/d2/lib/label"
// "oss.terrastruct.com/util-go/go2"
// )
// const (
// MIN_RADIUS = 200
// PADDING = 20
// ARC_STEPS = 60 // High resolution for perfect circles
// )
// func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
// objects := g.Root.ChildrenArray
// if len(objects) == 0 {
// return nil
// }
// for _, obj := range g.Objects {
// positionLabelsIcons(obj)
// }
// baseRadius := calculateBaseRadius(objects)
// positionObjects(objects, baseRadius)
// for _, edge := range g.Edges {
// createPerfectArc(edge, baseRadius)
// }
// return nil
// }
// func calculateBaseRadius(objects []*d2graph.Object) float64 {
// numNodes := float64(len(objects))
// maxSize := 0.0
// for _, obj := range objects {
// size := math.Max(obj.Width, obj.Height)
// maxSize = math.Max(maxSize, size)
// }
// radius := (maxSize + 2*PADDING) / (2 * math.Sin(math.Pi/numNodes))
// return math.Max(radius, MIN_RADIUS)
// }
// func positionObjects(objects []*d2graph.Object, radius float64) {
// numObjects := float64(len(objects))
// angleOffset := -math.Pi / 2
// for i, obj := range objects {
// angle := angleOffset + (2*math.Pi*float64(i))/numObjects
// x := radius * math.Cos(angle)
// y := radius * math.Sin(angle)
// obj.TopLeft = geo.NewPoint(
// x-obj.Width/2,
// y-obj.Height/2,
// )
// }
// }
// func createPerfectArc(edge *d2graph.Edge, baseRadius float64) {
// if edge.Src == nil || edge.Dst == nil || edge.Src == edge.Dst {
// return
// }
// srcCenter := edge.Src.Center()
// dstCenter := edge.Dst.Center()
// center := geo.NewPoint(0, 0) // Layout center
// // Calculate angles with proper wrapping
// startAngle := math.Atan2(srcCenter.Y-center.Y, srcCenter.X-center.X)
// endAngle := math.Atan2(dstCenter.Y-center.Y, dstCenter.X-center.X)
// // Handle angle wrapping for shortest path
// angleDiff := endAngle - startAngle
// if angleDiff < 0 {
// angleDiff += 2 * math.Pi
// }
// if angleDiff > math.Pi {
// angleDiff -= 2 * math.Pi
// }
// // Generate perfect circular arc
// path := make([]*geo.Point, 0, ARC_STEPS+1)
// for i := 0; i <= ARC_STEPS; i++ {
// t := float64(i) / ARC_STEPS
// currentAngle := startAngle + t*angleDiff
// x := center.X + baseRadius*math.Cos(currentAngle)
// y := center.Y + baseRadius*math.Sin(currentAngle)
// path = append(path, geo.NewPoint(x, y))
// }
// // Clip to shape boundaries while preserving arc
// edge.Route = path
// startIdx, endIdx := edge.TraceToShape(edge.Route, 0, len(edge.Route)-1)
// // Maintain smooth arc after clipping
// if startIdx < endIdx {
// edge.Route = edge.Route[startIdx : endIdx+1]
// // Ensure minimum points for smooth rendering
// if len(edge.Route) < 3 {
// edge.Route = []*geo.Point{path[0], path[len(path)-1]}
// }
// }
// edge.IsCurve = true
// }
// func positionLabelsIcons(obj *d2graph.Object) {
// // If there's an icon but no icon position, give it a default
// if obj.Icon != nil && obj.IconPosition == nil {
// if len(obj.ChildrenArray) > 0 {
// obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
// if obj.LabelPosition == nil {
// obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
// return
// }
// } else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
// obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
// } else {
// obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
// }
// }
// if obj.HasLabel() && obj.LabelPosition == nil {
// if len(obj.ChildrenArray) > 0 {
// obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
// } else if obj.HasOutsideBottomLabel() {
// obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
// } else if obj.Icon != nil {
// obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
// } else {
// obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
// }
// if float64(obj.LabelDimensions.Width) > obj.Width ||
// float64(obj.LabelDimensions.Height) > obj.Height {
// if len(obj.ChildrenArray) > 0 {
// obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
// } else {
// obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
// }
// }
// }
// }
// func boxContains(b *geo.Box, p *geo.Point) bool {
// return p.X >= b.TopLeft.X &&
// p.X <= b.TopLeft.X+b.Width &&
// p.Y >= b.TopLeft.Y &&
// p.Y <= b.TopLeft.Y+b.Height
// }
// func boxIntersections(b *geo.Box, seg geo.Segment) []*geo.Point {
// return b.Intersections(seg)
// }