d2/d2layouts/d2cycle/layout.go

262 lines
7.6 KiB
Go
Raw Normal View History

2025-02-21 16:34:23 +00:00
package d2cycle
import (
2025-02-22 10:36:51 +00:00
"context"
"math"
2025-02-21 16:34:23 +00:00
2025-02-22 10:36:51 +00:00
"oss.terrastruct.com/d2/d2graph"
"oss.terrastruct.com/d2/lib/geo"
"oss.terrastruct.com/d2/lib/label"
"oss.terrastruct.com/util-go/go2"
2025-02-21 16:34:23 +00:00
)
const (
2025-02-22 10:36:51 +00:00
MIN_RADIUS = 200
PADDING = 20
MIN_SEGMENT_LEN = 10
ARC_STEPS = 30
EPSILON = 1e-10 // Small value for floating point comparisons
2025-02-21 16:34:23 +00:00
)
2025-02-22 10:36:51 +00:00
// Layout computes node positions and generates curved edge routes.
2025-02-21 16:34:23 +00:00
func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
2025-02-22 10:36:51 +00:00
objects := g.Root.ChildrenArray
if len(objects) == 0 {
return nil
}
2025-02-21 17:41:31 +00:00
2025-02-22 10:36:51 +00:00
for _, obj := range g.Objects {
positionLabelsIcons(obj)
}
2025-02-21 17:41:31 +00:00
2025-02-22 10:36:51 +00:00
radius := calculateRadius(objects)
positionObjects(objects, radius)
2025-02-21 17:41:31 +00:00
2025-02-22 10:36:51 +00:00
for _, edge := range g.Edges {
createPreciseCircularArc(edge)
}
2025-02-21 17:41:31 +00:00
2025-02-22 10:36:51 +00:00
return nil
2025-02-21 16:34:23 +00:00
}
2025-02-21 17:29:24 +00:00
func calculateRadius(objects []*d2graph.Object) float64 {
2025-02-22 10:36:51 +00:00
numObjects := float64(len(objects))
maxSize := 0.0
for _, obj := range objects {
size := math.Max(obj.Box.Width, obj.Box.Height)
maxSize = math.Max(maxSize, size)
}
minRadius := (maxSize/2.0 + PADDING) / math.Sin(math.Pi/numObjects)
return math.Max(minRadius, MIN_RADIUS)
2025-02-21 16:34:23 +00:00
}
func positionObjects(objects []*d2graph.Object, radius float64) {
2025-02-22 10:36:51 +00:00
numObjects := float64(len(objects))
angleOffset := -math.Pi / 2
for i, obj := range objects {
angle := angleOffset + (2*math.Pi*float64(i)/numObjects)
x := radius * math.Cos(angle)
y := radius * math.Sin(angle)
obj.TopLeft = geo.NewPoint(
x-obj.Box.Width/2,
y-obj.Box.Height/2,
)
}
2025-02-21 16:34:23 +00:00
}
2025-02-22 10:36:51 +00:00
// createPreciseCircularArc computes a curved edge path that touches the node boundaries exactly.
2025-02-22 10:32:46 +00:00
func createPreciseCircularArc(edge *d2graph.Edge) {
2025-02-22 10:36:51 +00:00
if edge.Src == nil || edge.Dst == nil {
return
}
srcCenter := edge.Src.Center()
dstCenter := edge.Dst.Center()
// Compute angles for the circular arc.
srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
if dstAngle < srcAngle {
dstAngle += 2 * math.Pi
}
arcRadius := math.Hypot(srcCenter.X, srcCenter.Y)
// Generate the initial arc path.
path := make([]*geo.Point, 0, ARC_STEPS+1)
for i := 0; i <= ARC_STEPS; i++ {
t := float64(i) / float64(ARC_STEPS)
angle := srcAngle + t*(dstAngle-srcAngle)
x := arcRadius * math.Cos(angle)
y := arcRadius * math.Sin(angle)
path = append(path, geo.NewPoint(x, y))
}
// Compute precise intersection points so the arrow touches the node boundaries.
// For the source, the segment goes from the center (inside) to the next point (outside).
srcIntersection := findPreciseBoxIntersection(edge.Src.Box, path[0], path[1])
// For the destination, the segment goes from the center to the previous point (outside).
dstIntersection := findPreciseBoxIntersection(edge.Dst.Box, path[len(path)-1], path[len(path)-2])
// Update the endpoints with the snapped intersection points.
path[0] = srcIntersection
path[len(path)-1] = dstIntersection
// Trim intermediate points that still fall inside the boxes.
startIdx := 0
endIdx := len(path) - 1
for i := 1; i < len(path); i++ {
if !boxContains(edge.Src.Box, path[i]) {
startIdx = i - 1
break
}
}
for i := len(path) - 2; i >= 0; i-- {
if !boxContains(edge.Dst.Box, path[i]) {
endIdx = i + 1
break
}
}
edge.Route = path[startIdx : endIdx+1]
edge.IsCurve = true
2025-02-21 17:29:24 +00:00
}
2025-02-22 10:36:51 +00:00
// findPreciseBoxIntersection returns the intersection point of the line (from p1 to p2) with the box boundary,
// snapped exactly to the nearest edge.
2025-02-22 10:32:46 +00:00
func findPreciseBoxIntersection(box *geo.Box, p1, p2 *geo.Point) *geo.Point {
2025-02-22 10:36:51 +00:00
// Define the four box edges.
edges := []geo.Segment{
*geo.NewSegment(
geo.NewPoint(box.TopLeft.X, box.TopLeft.Y),
geo.NewPoint(box.TopLeft.X+box.Width, box.TopLeft.Y),
), // Top
*geo.NewSegment(
geo.NewPoint(box.TopLeft.X+box.Width, box.TopLeft.Y),
geo.NewPoint(box.TopLeft.X+box.Width, box.TopLeft.Y+box.Height),
), // Right
*geo.NewSegment(
geo.NewPoint(box.TopLeft.X, box.TopLeft.Y+box.Height),
geo.NewPoint(box.TopLeft.X+box.Width, box.TopLeft.Y+box.Height),
), // Bottom
*geo.NewSegment(
geo.NewPoint(box.TopLeft.X, box.TopLeft.Y),
geo.NewPoint(box.TopLeft.X, box.TopLeft.Y+box.Height),
), // Left
}
// Construct the line from p1 (inside) to p2 (outside).
line := *geo.NewSegment(p1, p2)
var closestIntersection *geo.Point
minDist := math.MaxFloat64
// Find the intersection among the four edges that is closest to p1.
for _, seg := range edges {
if intersection := findSegmentIntersection(line, seg); intersection != nil {
dist := math.Hypot(intersection.X-p1.X, intersection.Y-p1.Y)
if dist < minDist {
minDist = dist
closestIntersection = intersection
}
}
}
if closestIntersection != nil {
return snapToBoundary(box, closestIntersection)
}
return p1
2025-02-21 19:24:57 +00:00
}
2025-02-21 17:41:31 +00:00
2025-02-22 10:36:51 +00:00
// findSegmentIntersection computes the intersection between two line segments s1 and s2 using their parametric form.
2025-02-22 10:32:46 +00:00
func findSegmentIntersection(s1, s2 geo.Segment) *geo.Point {
2025-02-22 10:36:51 +00:00
x1, y1 := s1.Start.X, s1.Start.Y
x2, y2 := s1.End.X, s1.End.Y
x3, y3 := s2.Start.X, s2.Start.Y
x4, y4 := s2.End.X, s2.End.Y
denom := (x1-x2)*(y3-y4) - (y1-y2)*(x3-x4)
if math.Abs(denom) < EPSILON {
return nil
}
t := ((x1-x3)*(y3-y4) - (y1-y3)*(x3-x4)) / denom
u := -((x1-x2)*(y1-y3) - (y1-y2)*(x1-x3)) / denom
if t >= 0 && t <= 1 && u >= 0 && u <= 1 {
x := x1 + t*(x2-x1)
y := y1 + t*(y2-y1)
return geo.NewPoint(x, y)
}
return nil
2025-02-21 19:24:57 +00:00
}
2025-02-22 10:36:51 +00:00
// snapToBoundary adjusts point p so that it lies exactly on the nearest boundary of box.
func snapToBoundary(box *geo.Box, p *geo.Point) *geo.Point {
left := box.TopLeft.X
right := box.TopLeft.X + box.Width
top := box.TopLeft.Y
bottom := box.TopLeft.Y + box.Height
dLeft := math.Abs(p.X - left)
dRight := math.Abs(p.X - right)
dTop := math.Abs(p.Y - top)
dBottom := math.Abs(p.Y - bottom)
if dLeft < dRight && dLeft < dTop && dLeft < dBottom {
return geo.NewPoint(left, p.Y)
} else if dRight < dLeft && dRight < dTop && dRight < dBottom {
return geo.NewPoint(right, p.Y)
} else if dTop < dBottom {
return geo.NewPoint(p.X, top)
} else {
return geo.NewPoint(p.X, bottom)
}
}
// boxContains returns true if point p is inside the box (using EPSILON for floating point tolerance).
2025-02-22 10:32:46 +00:00
func boxContains(b *geo.Box, p *geo.Point) bool {
2025-02-22 10:36:51 +00:00
return p.X >= b.TopLeft.X-EPSILON &&
p.X <= b.TopLeft.X+b.Width+EPSILON &&
p.Y >= b.TopLeft.Y-EPSILON &&
p.Y <= b.TopLeft.Y+b.Height+EPSILON
2025-02-21 17:41:31 +00:00
}
func positionLabelsIcons(obj *d2graph.Object) {
2025-02-22 10:36:51 +00:00
if obj.Icon != nil && obj.IconPosition == nil {
if len(obj.ChildrenArray) > 0 {
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
if obj.LabelPosition == nil {
obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
return
}
} else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
} else {
obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
}
if obj.HasLabel() && obj.LabelPosition == nil {
if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else if obj.HasOutsideBottomLabel() {
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
} else if obj.Icon != nil {
obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
} else {
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
if float64(obj.LabelDimensions.Width) > obj.Width ||
float64(obj.LabelDimensions.Height) > obj.Height {
if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else {
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
}
}
}
}