Span boxes -> spans

This commit is contained in:
Júlio César Batista 2022-11-29 15:40:43 -08:00
parent 82f2cd37f5
commit 68638899bf
No known key found for this signature in database
GPG key ID: 10C4B861BF314878
3 changed files with 44 additions and 44 deletions

View file

@ -12,13 +12,13 @@ const MIN_ACTOR_DISTANCE = 200.
const MIN_EDGE_DISTANCE = 100. const MIN_EDGE_DISTANCE = 100.
// default size // default size
const SPAN_BOX_WIDTH = 20. const SPAN_WIDTH = 20.
// small pad so that edges don't touch lifelines and span boxes // small pad so that edges don't touch lifelines and spans
const SPAN_BOX_EDGE_PAD = 5. const SPAN_EDGE_PAD = 5.
// as the span boxes start getting nested, their size grows // as the spans start getting nested, their size grows
const SPAN_BOX_DEPTH_GROW_FACTOR = 10. const SPAN_BOX_DEPTH_GROW_FACTOR = 10.
// when a span box has a single edge // when a span has a single edge
const MIN_SPAN_BOX_HEIGHT = MIN_EDGE_DISTANCE / 2. const MIN_SPAN_HEIGHT = MIN_EDGE_DISTANCE / 2.

View file

@ -17,7 +17,7 @@ func Layout(ctx context.Context, g *d2graph.Graph) (err error) {
sd := &sequenceDiagram{ sd := &sequenceDiagram{
graph: g, graph: g,
objectRank: make(map[*d2graph.Object]int), objectRank: make(map[*d2graph.Object]int),
objectDepth: make(map[*d2graph.Object]int), objectLevel: make(map[*d2graph.Object]int),
minEdgeRank: make(map[*d2graph.Object]int), minEdgeRank: make(map[*d2graph.Object]int),
maxEdgeRank: make(map[*d2graph.Object]int), maxEdgeRank: make(map[*d2graph.Object]int),
edgeYStep: MIN_EDGE_DISTANCE, edgeYStep: MIN_EDGE_DISTANCE,
@ -27,7 +27,7 @@ func Layout(ctx context.Context, g *d2graph.Graph) (err error) {
sd.init() sd.init()
sd.placeActors() sd.placeActors()
sd.placeSpanBoxes() sd.placeSpans()
sd.routeEdges() sd.routeEdges()
sd.addLifelineEdges() sd.addLifelineEdges()
@ -41,11 +41,11 @@ type sequenceDiagram struct {
actors []*d2graph.Object actors []*d2graph.Object
spans []*d2graph.Object spans []*d2graph.Object
// can be either actors or span boxes // can be either actors or spans
// rank: left to right position of actors/span boxes // rank: left to right position of actors/spans (spans have the same rank as their parents)
objectRank map[*d2graph.Object]int objectRank map[*d2graph.Object]int
// depth: the nested levels of a given actor/span // similar to d2graph.Object.Level() just don't make the recursive calls
objectDepth map[*d2graph.Object]int objectLevel map[*d2graph.Object]int
// keep track of the first and last edge of a given actor // keep track of the first and last edge of a given actor
// the edge rank is the order in which it appears from top to bottom // the edge rank is the order in which it appears from top to bottom
@ -70,15 +70,15 @@ func (sd *sequenceDiagram) init() {
if sd.isActor(obj) { if sd.isActor(obj) {
sd.actors = append(sd.actors, obj) sd.actors = append(sd.actors, obj)
sd.objectRank[obj] = len(sd.actors) sd.objectRank[obj] = len(sd.actors)
sd.objectDepth[obj] = 0 sd.objectLevel[obj] = 0
sd.maxActorHeight = math.Max(sd.maxActorHeight, obj.Height) sd.maxActorHeight = math.Max(sd.maxActorHeight, obj.Height)
} else { } else {
// span boxes are always rectangles and have no labels // spans are always rectangles and have no labels
obj.Attributes.Label = d2graph.Scalar{Value: ""} obj.Attributes.Label = d2graph.Scalar{Value: ""}
obj.Attributes.Shape = d2graph.Scalar{Value: shape.SQUARE_TYPE} obj.Attributes.Shape = d2graph.Scalar{Value: shape.SQUARE_TYPE}
sd.spans = append(sd.spans, obj) sd.spans = append(sd.spans, obj)
sd.objectRank[obj] = sd.objectRank[obj.Parent] sd.objectRank[obj] = sd.objectRank[obj.Parent]
sd.objectDepth[obj] = sd.objectDepth[obj.Parent] + 1 sd.objectLevel[obj] = sd.objectLevel[obj.Parent] + 1
} }
queue = append(queue, obj.ChildrenArray...) queue = append(queue, obj.ChildrenArray...)
@ -156,7 +156,7 @@ func (sd *sequenceDiagram) addLifelineEdges() {
} }
} }
// placeSpanBoxes places span boxes over the object lifeline // placeSpans places spans over the object lifeline
// ┌──────────┐ // ┌──────────┐
// │ actor │ // │ actor │
// └────┬─────┘ // └────┬─────┘
@ -168,22 +168,22 @@ func (sd *sequenceDiagram) addLifelineEdges() {
// │ // │
// lifeline // lifeline
// │ // │
func (sd *sequenceDiagram) placeSpanBoxes() { func (sd *sequenceDiagram) placeSpans() {
// quickly find the span box center X // quickly find the span center X
rankToX := make(map[int]float64) rankToX := make(map[int]float64)
for _, actor := range sd.actors { for _, actor := range sd.actors {
rankToX[sd.objectRank[actor]] = actor.Center().X rankToX[sd.objectRank[actor]] = actor.Center().X
} }
// places span boxes from most to least nested // places spans from most to least nested
// the order is important because the only way a child span box exists is if there'e an edge to it // the order is important because the only way a child span exists is if there'e an edge to it
// however, the parent span might not have an edge to it and then its position is based on the child position // however, the parent span might not have an edge to it and then its position is based on the child position
// or, there can be edge to it, but it comes after the child one meaning the top left position is still based on the child // or, there can be edge to it, but it comes after the child one meaning the top left position is still based on the child
// and not on its own edge // and not on its own edge
spanFromMostNested := make([]*d2graph.Object, len(sd.spans)) spanFromMostNested := make([]*d2graph.Object, len(sd.spans))
copy(spanFromMostNested, sd.spans) copy(spanFromMostNested, sd.spans)
sort.SliceStable(spanFromMostNested, func(i, j int) bool { sort.SliceStable(spanFromMostNested, func(i, j int) bool {
return sd.objectDepth[spanFromMostNested[i]] > sd.objectDepth[spanFromMostNested[j]] return sd.objectLevel[spanFromMostNested[i]] > sd.objectLevel[spanFromMostNested[j]]
}) })
for _, span := range spanFromMostNested { for _, span := range spanFromMostNested {
// finds the position based on children // finds the position based on children
@ -194,7 +194,7 @@ func (sd *sequenceDiagram) placeSpanBoxes() {
maxChildY = math.Max(maxChildY, child.TopLeft.Y+child.Height) maxChildY = math.Max(maxChildY, child.TopLeft.Y+child.Height)
} }
// finds the position if there are edges to this span box // finds the position if there are edges to this span
minEdgeY := math.Inf(1) minEdgeY := math.Inf(1)
if minRank, exists := sd.minEdgeRank[span]; exists { if minRank, exists := sd.minEdgeRank[span]; exists {
minEdgeY = sd.getEdgeY(minRank) minEdgeY = sd.getEdgeY(minRank)
@ -209,17 +209,17 @@ func (sd *sequenceDiagram) placeSpanBoxes() {
if minY == minChildY { if minY == minChildY {
minY -= SPAN_BOX_DEPTH_GROW_FACTOR minY -= SPAN_BOX_DEPTH_GROW_FACTOR
} else { } else {
minY -= SPAN_BOX_EDGE_PAD minY -= SPAN_EDGE_PAD
} }
maxY := math.Max(maxEdgeY, maxChildY) maxY := math.Max(maxEdgeY, maxChildY)
if maxY == maxChildY { if maxY == maxChildY {
maxY += SPAN_BOX_DEPTH_GROW_FACTOR maxY += SPAN_BOX_DEPTH_GROW_FACTOR
} else { } else {
maxY += SPAN_BOX_EDGE_PAD maxY += SPAN_EDGE_PAD
} }
height := math.Max(maxY-minY, MIN_SPAN_BOX_HEIGHT) height := math.Max(maxY-minY, MIN_SPAN_HEIGHT)
width := SPAN_BOX_WIDTH + (float64(sd.objectDepth[span]-1) * SPAN_BOX_DEPTH_GROW_FACTOR) width := SPAN_WIDTH + (float64(sd.objectLevel[span]-1) * SPAN_BOX_DEPTH_GROW_FACTOR)
x := rankToX[sd.objectRank[span]] - (width / 2.) x := rankToX[sd.objectRank[span]] - (width / 2.)
span.Box = geo.NewBox(geo.NewPoint(x, minY), width, height) span.Box = geo.NewBox(geo.NewPoint(x, minY), width, height)
} }
@ -249,11 +249,11 @@ func (sd *sequenceDiagram) routeEdges() {
} }
if isLeftToRight { if isLeftToRight {
startX += SPAN_BOX_EDGE_PAD startX += SPAN_EDGE_PAD
endX -= SPAN_BOX_EDGE_PAD endX -= SPAN_EDGE_PAD
} else { } else {
startX -= SPAN_BOX_EDGE_PAD startX -= SPAN_EDGE_PAD
endX += SPAN_BOX_EDGE_PAD endX += SPAN_EDGE_PAD
} }
edgeY := sd.getEdgeY(rank) edgeY := sd.getEdgeY(rank)

View file

@ -92,19 +92,19 @@ func TestBasicSequenceDiagram(t *testing.T) {
} }
if edge.Src.TopLeft.X < edge.Dst.TopLeft.X { if edge.Src.TopLeft.X < edge.Dst.TopLeft.X {
// left to right // left to right
if edge.Route[0].X != edge.Src.Center().X+SPAN_BOX_EDGE_PAD { if edge.Route[0].X != edge.Src.Center().X+SPAN_EDGE_PAD {
t.Fatalf("expected edge[%d] x to be at the actor center", i) t.Fatalf("expected edge[%d] x to be at the actor center", i)
} }
if edge.Route[1].X != edge.Dst.Center().X-SPAN_BOX_EDGE_PAD { if edge.Route[1].X != edge.Dst.Center().X-SPAN_EDGE_PAD {
t.Fatalf("expected edge[%d] x to be at the actor center", i) t.Fatalf("expected edge[%d] x to be at the actor center", i)
} }
} else { } else {
if edge.Route[0].X != edge.Src.Center().X-SPAN_BOX_EDGE_PAD { if edge.Route[0].X != edge.Src.Center().X-SPAN_EDGE_PAD {
t.Fatalf("expected edge[%d] x to be at the actor center", i) t.Fatalf("expected edge[%d] x to be at the actor center", i)
} }
if edge.Route[1].X != edge.Dst.Center().X+SPAN_BOX_EDGE_PAD { if edge.Route[1].X != edge.Dst.Center().X+SPAN_EDGE_PAD {
t.Fatalf("expected edge[%d] x to be at the actor center", i) t.Fatalf("expected edge[%d] x to be at the actor center", i)
} }
} }
@ -146,7 +146,7 @@ func TestBasicSequenceDiagram(t *testing.T) {
} }
} }
func TestSpanBoxesSequenceDiagram(t *testing.T) { func TestSpansSequenceDiagram(t *testing.T) {
// ┌─────┐ ┌─────┐ // ┌─────┐ ┌─────┐
// │ a │ │ b │ // │ a │ │ b │
// └──┬──┘ └──┬──┘ // └──┬──┘ └──┬──┘
@ -197,11 +197,11 @@ func TestSpanBoxesSequenceDiagram(t *testing.T) {
} }
if a_t1.Attributes.Label.Value != "" { if a_t1.Attributes.Label.Value != "" {
t.Fatalf("expected no label for span box, got %s", a_t1.Attributes.Label.Value) t.Fatalf("expected no label for span, got %s", a_t1.Attributes.Label.Value)
} }
if a_t1.Attributes.Shape.Value != shape.SQUARE_TYPE { if a_t1.Attributes.Shape.Value != shape.SQUARE_TYPE {
t.Fatalf("expected square shape for span box, got %s", a_t1.Attributes.Shape.Value) t.Fatalf("expected square shape for span, got %s", a_t1.Attributes.Shape.Value)
} }
if a_t1.Height != b_t1.Height { if a_t1.Height != b_t1.Height {
@ -209,13 +209,13 @@ func TestSpanBoxesSequenceDiagram(t *testing.T) {
} }
// Y diff of the 2 first edges // Y diff of the 2 first edges
expectedHeight := g.Edges[1].Route[0].Y - g.Edges[0].Route[0].Y + (2 * SPAN_BOX_EDGE_PAD) expectedHeight := g.Edges[1].Route[0].Y - g.Edges[0].Route[0].Y + (2 * SPAN_EDGE_PAD)
if a_t1.Height != expectedHeight { if a_t1.Height != expectedHeight {
t.Fatalf("expected a.t1 height to be %.5f, got %.5f", expectedHeight, a_t1.Height) t.Fatalf("expected a.t1 height to be %.5f, got %.5f", expectedHeight, a_t1.Height)
} }
if a_t1.Width != SPAN_BOX_WIDTH { if a_t1.Width != SPAN_WIDTH {
t.Fatalf("expected span box width to be %.5f, got %.5f", SPAN_BOX_WIDTH, a_t1.Width) t.Fatalf("expected span width to be %.5f, got %.5f", SPAN_WIDTH, a_t1.Width)
} }
// check positions // check positions
@ -231,20 +231,20 @@ func TestSpanBoxesSequenceDiagram(t *testing.T) {
if a_t1.TopLeft.Y != b_t1.TopLeft.Y { if a_t1.TopLeft.Y != b_t1.TopLeft.Y {
t.Fatal("expected a.t1 and b.t1 to be placed at the same Y") t.Fatal("expected a.t1 and b.t1 to be placed at the same Y")
} }
if a_t1.TopLeft.Y != g.Edges[0].Route[0].Y-SPAN_BOX_EDGE_PAD { if a_t1.TopLeft.Y != g.Edges[0].Route[0].Y-SPAN_EDGE_PAD {
t.Fatal("expected a.t1 to be placed at the same Y of the first edge") t.Fatal("expected a.t1 to be placed at the same Y of the first edge")
} }
// check routes // check routes
if g.Edges[0].Route[0].X != a_t1.TopLeft.X+a_t1.Width+SPAN_BOX_EDGE_PAD { if g.Edges[0].Route[0].X != a_t1.TopLeft.X+a_t1.Width+SPAN_EDGE_PAD {
t.Fatal("expected the first edge to start on a.t1 top right X") t.Fatal("expected the first edge to start on a.t1 top right X")
} }
if g.Edges[0].Route[1].X != b_t1.TopLeft.X-SPAN_BOX_EDGE_PAD { if g.Edges[0].Route[1].X != b_t1.TopLeft.X-SPAN_EDGE_PAD {
t.Fatal("expected the first edge to end on b.t1 top left X") t.Fatal("expected the first edge to end on b.t1 top left X")
} }
if g.Edges[2].Route[1].X != b.Center().X-SPAN_BOX_EDGE_PAD { if g.Edges[2].Route[1].X != b.Center().X-SPAN_EDGE_PAD {
t.Fatal("expected the third edge to end on b.t1 center X") t.Fatal("expected the third edge to end on b.t1 center X")
} }
} }