2025-02-21 16:34:23 +00:00
|
|
|
package d2cycle
|
|
|
|
|
|
|
|
|
|
import (
|
2025-02-22 10:36:51 +00:00
|
|
|
"context"
|
2025-02-26 04:12:19 +00:00
|
|
|
"fmt"
|
2025-02-22 10:36:51 +00:00
|
|
|
"math"
|
2025-02-22 10:37:44 +00:00
|
|
|
"sort"
|
2025-02-21 16:34:23 +00:00
|
|
|
|
2025-02-22 10:36:51 +00:00
|
|
|
"oss.terrastruct.com/d2/d2graph"
|
|
|
|
|
"oss.terrastruct.com/d2/lib/geo"
|
|
|
|
|
"oss.terrastruct.com/d2/lib/label"
|
|
|
|
|
"oss.terrastruct.com/util-go/go2"
|
2025-02-21 16:34:23 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
|
|
const (
|
2025-02-26 04:12:19 +00:00
|
|
|
MIN_RADIUS = 250 // Increased to provide more space
|
|
|
|
|
PADDING = 40 // Increased padding between objects
|
|
|
|
|
MIN_SEGMENT_LEN = 15 // Increased minimum segment length
|
|
|
|
|
ARC_STEPS = 100 // Keep the same number of steps for arc calculation
|
|
|
|
|
LABEL_MARGIN = 10 // Margin for labels
|
|
|
|
|
EDGE_BEND_FACTOR = 0.3 // Controls how much edges bend inward/outward
|
|
|
|
|
EDGE_PADDING_FACTOR = 0.15 // Controls spacing between parallel edges
|
2025-02-21 16:34:23 +00:00
|
|
|
)
|
|
|
|
|
|
2025-02-23 18:35:34 +00:00
|
|
|
// Layout lays out the graph and computes curved edge routes
|
2025-02-21 16:34:23 +00:00
|
|
|
func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
|
2025-02-22 10:36:51 +00:00
|
|
|
objects := g.Root.ChildrenArray
|
|
|
|
|
if len(objects) == 0 {
|
|
|
|
|
return nil
|
|
|
|
|
}
|
2025-02-21 17:41:31 +00:00
|
|
|
|
2025-02-26 04:12:19 +00:00
|
|
|
// Pre-compute dimensions for all objects
|
2025-02-22 10:36:51 +00:00
|
|
|
for _, obj := range g.Objects {
|
|
|
|
|
positionLabelsIcons(obj)
|
|
|
|
|
}
|
2025-02-21 17:41:31 +00:00
|
|
|
|
2025-02-26 04:12:19 +00:00
|
|
|
// Calculate optimal radius based on number and size of objects
|
|
|
|
|
radius := calculateOptimalRadius(objects)
|
|
|
|
|
|
|
|
|
|
// Position objects in a circle
|
2025-02-22 10:36:51 +00:00
|
|
|
positionObjects(objects, radius)
|
2025-02-26 04:12:19 +00:00
|
|
|
|
|
|
|
|
// Adjust positions to resolve overlaps
|
|
|
|
|
resolveOverlaps(objects, radius)
|
2025-02-21 17:41:31 +00:00
|
|
|
|
2025-02-26 04:12:19 +00:00
|
|
|
// Create edge routes for all edges
|
|
|
|
|
createEdgeRoutes(g.Edges, objects, radius)
|
2025-02-21 17:41:31 +00:00
|
|
|
|
2025-02-22 10:36:51 +00:00
|
|
|
return nil
|
2025-02-21 16:34:23 +00:00
|
|
|
}
|
|
|
|
|
|
2025-02-26 04:12:19 +00:00
|
|
|
// calculateOptimalRadius computes an ideal radius based on number and size of objects
|
|
|
|
|
func calculateOptimalRadius(objects []*d2graph.Object) float64 {
|
2025-02-22 10:36:51 +00:00
|
|
|
numObjects := float64(len(objects))
|
2025-02-26 04:12:19 +00:00
|
|
|
|
|
|
|
|
// Find largest object dimension
|
2025-02-22 10:36:51 +00:00
|
|
|
maxSize := 0.0
|
2025-02-26 04:12:19 +00:00
|
|
|
totalArea := 0.0
|
2025-02-22 10:36:51 +00:00
|
|
|
for _, obj := range objects {
|
|
|
|
|
size := math.Max(obj.Box.Width, obj.Box.Height)
|
|
|
|
|
maxSize = math.Max(maxSize, size)
|
2025-02-26 04:12:19 +00:00
|
|
|
totalArea += obj.Box.Width * obj.Box.Height
|
2025-02-22 10:36:51 +00:00
|
|
|
}
|
2025-02-26 04:12:19 +00:00
|
|
|
|
|
|
|
|
// Minimum radius based on largest object
|
|
|
|
|
minRadiusBySize := (maxSize/2.0 + PADDING) / math.Sin(math.Pi/numObjects)
|
|
|
|
|
|
|
|
|
|
// Alternative calculation based on total area
|
|
|
|
|
areaRadius := math.Sqrt(totalArea / (math.Pi * 0.5)) * 1.5
|
|
|
|
|
|
|
|
|
|
// Use the larger of the minimum values
|
|
|
|
|
calculatedRadius := math.Max(minRadiusBySize, areaRadius)
|
|
|
|
|
|
|
|
|
|
// Ensure we don't go below minimum radius
|
|
|
|
|
return math.Max(calculatedRadius, MIN_RADIUS)
|
2025-02-21 16:34:23 +00:00
|
|
|
}
|
|
|
|
|
|
2025-02-26 04:12:19 +00:00
|
|
|
// positionObjects arranges objects in a circle with the given radius
|
2025-02-21 16:34:23 +00:00
|
|
|
func positionObjects(objects []*d2graph.Object, radius float64) {
|
2025-02-22 10:36:51 +00:00
|
|
|
numObjects := float64(len(objects))
|
2025-02-26 04:12:19 +00:00
|
|
|
|
|
|
|
|
// Start from top (-π/2) with equal spacing
|
2025-02-22 16:34:58 +00:00
|
|
|
angleOffset := -math.Pi / 2
|
2025-02-22 10:36:51 +00:00
|
|
|
|
2025-02-26 04:12:19 +00:00
|
|
|
// Special case for small number of objects
|
|
|
|
|
if numObjects <= 3 {
|
|
|
|
|
// For 2-3 objects, increase spacing
|
|
|
|
|
angleOffset = -math.Pi / 2
|
|
|
|
|
radius *= 1.2
|
|
|
|
|
}
|
|
|
|
|
|
2025-02-22 10:36:51 +00:00
|
|
|
for i, obj := range objects {
|
2025-02-23 18:46:31 +00:00
|
|
|
angle := angleOffset + (2 * math.Pi * float64(i) / numObjects)
|
2025-02-22 10:36:51 +00:00
|
|
|
x := radius * math.Cos(angle)
|
|
|
|
|
y := radius * math.Sin(angle)
|
|
|
|
|
obj.TopLeft = geo.NewPoint(
|
2025-02-26 04:12:19 +00:00
|
|
|
x - obj.Box.Width/2,
|
|
|
|
|
y - obj.Box.Height/2,
|
2025-02-22 10:36:51 +00:00
|
|
|
)
|
|
|
|
|
}
|
2025-02-21 16:34:23 +00:00
|
|
|
}
|
|
|
|
|
|
2025-02-26 04:12:19 +00:00
|
|
|
// resolveOverlaps detects and fixes overlapping objects
|
|
|
|
|
func resolveOverlaps(objects []*d2graph.Object, radius float64) {
|
|
|
|
|
if len(objects) <= 1 {
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Maximum number of iterations to prevent infinite loops
|
|
|
|
|
maxIterations := 10
|
|
|
|
|
iteration := 0
|
|
|
|
|
|
|
|
|
|
for iteration < maxIterations {
|
|
|
|
|
overlapsResolved := true
|
|
|
|
|
|
|
|
|
|
// Check each pair of objects for overlap
|
|
|
|
|
for i := 0; i < len(objects); i++ {
|
|
|
|
|
for j := i + 1; j < len(objects); j++ {
|
|
|
|
|
obj1 := objects[i]
|
|
|
|
|
obj2 := objects[j]
|
|
|
|
|
|
|
|
|
|
// Calculate box centers
|
|
|
|
|
center1 := obj1.Center()
|
|
|
|
|
center2 := obj2.Center()
|
|
|
|
|
|
|
|
|
|
// Calculate minimum separation needed
|
|
|
|
|
minSepX := (obj1.Box.Width + obj2.Box.Width) / 2 + PADDING
|
|
|
|
|
minSepY := (obj1.Box.Height + obj2.Box.Height) / 2 + PADDING
|
|
|
|
|
|
|
|
|
|
// Calculate actual separation
|
|
|
|
|
dx := math.Abs(center2.X - center1.X)
|
|
|
|
|
dy := math.Abs(center2.Y - center1.Y)
|
|
|
|
|
|
|
|
|
|
// Check for overlap
|
|
|
|
|
if dx < minSepX && dy < minSepY {
|
|
|
|
|
overlapsResolved = false
|
|
|
|
|
|
|
|
|
|
// Calculate push direction (from center to objects)
|
|
|
|
|
angle1 := math.Atan2(center1.Y, center1.X)
|
|
|
|
|
angle2 := math.Atan2(center2.Y, center2.X)
|
|
|
|
|
|
|
|
|
|
// Push objects outward slightly
|
|
|
|
|
pushFactor := 0.1 * radius
|
|
|
|
|
|
|
|
|
|
// Update first object position
|
|
|
|
|
newX1 := pushFactor * math.Cos(angle1)
|
|
|
|
|
newY1 := pushFactor * math.Sin(angle1)
|
|
|
|
|
obj1.TopLeft.X += newX1 - obj1.Box.Width/2
|
|
|
|
|
obj1.TopLeft.Y += newY1 - obj1.Box.Height/2
|
|
|
|
|
|
|
|
|
|
// Update second object position
|
|
|
|
|
newX2 := pushFactor * math.Cos(angle2)
|
|
|
|
|
newY2 := pushFactor * math.Sin(angle2)
|
|
|
|
|
obj2.TopLeft.X += newX2 - obj2.Box.Width/2
|
|
|
|
|
obj2.TopLeft.Y += newY2 - obj2.Box.Height/2
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If no overlaps were found, we're done
|
|
|
|
|
if overlapsResolved {
|
|
|
|
|
break
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
iteration++
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// createEdgeRoutes creates routes for all edges in the graph
|
|
|
|
|
func createEdgeRoutes(edges []*d2graph.Edge, objects []*d2graph.Object, radius float64) {
|
|
|
|
|
// First categorize edges to identify parallel edges
|
|
|
|
|
edgeGroups := groupParallelEdges(edges)
|
|
|
|
|
|
|
|
|
|
// Process each group of edges
|
|
|
|
|
for _, group := range edgeGroups {
|
|
|
|
|
if len(group) == 1 {
|
|
|
|
|
// Single edge
|
|
|
|
|
createCircularArc(group[0], radius, 0)
|
|
|
|
|
} else {
|
|
|
|
|
// Multiple parallel edges
|
|
|
|
|
for i, edge := range group {
|
|
|
|
|
// Alternate between inner and outer curves for parallel edges
|
|
|
|
|
offset := float64(i-(len(group)-1)/2) * EDGE_PADDING_FACTOR
|
|
|
|
|
createCircularArc(edge, radius, offset)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// groupParallelEdges identifies edges between the same source and destination
|
|
|
|
|
func groupParallelEdges(edges []*d2graph.Edge) [][]*d2graph.Edge {
|
|
|
|
|
groups := make(map[string][]*d2graph.Edge)
|
|
|
|
|
|
|
|
|
|
for _, edge := range edges {
|
|
|
|
|
if edge.Src == nil || edge.Dst == nil {
|
|
|
|
|
continue
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Create a key for each source-destination pair using object IDs or addresses
|
|
|
|
|
// Since GetID() is not available, use pointer addresses as unique identifiers
|
|
|
|
|
srcID := fmt.Sprintf("%p", edge.Src)
|
|
|
|
|
dstID := fmt.Sprintf("%p", edge.Dst)
|
|
|
|
|
key := srcID + "->" + dstID
|
|
|
|
|
|
|
|
|
|
groups[key] = append(groups[key], edge)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Convert map to slice of edge groups
|
|
|
|
|
result := make([][]*d2graph.Edge, 0, len(groups))
|
|
|
|
|
for _, group := range groups {
|
|
|
|
|
result = append(result, group)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// createCircularArc creates a curved path between source and destination objects
|
|
|
|
|
func createCircularArc(edge *d2graph.Edge, baseRadius float64, offset float64) {
|
2025-02-22 10:50:31 +00:00
|
|
|
if edge.Src == nil || edge.Dst == nil {
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
srcCenter := edge.Src.Center()
|
|
|
|
|
dstCenter := edge.Dst.Center()
|
2025-02-26 04:12:19 +00:00
|
|
|
|
|
|
|
|
// Calculate angles and radii
|
2025-02-22 16:34:58 +00:00
|
|
|
srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
|
|
|
|
|
dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
|
2025-02-26 04:12:19 +00:00
|
|
|
|
|
|
|
|
// Ensure we go the shorter way around the circle
|
2025-02-22 16:34:58 +00:00
|
|
|
if dstAngle < srcAngle {
|
2025-02-26 04:12:19 +00:00
|
|
|
if srcAngle - dstAngle > math.Pi {
|
|
|
|
|
dstAngle += 2 * math.Pi
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
if dstAngle - srcAngle > math.Pi {
|
|
|
|
|
srcAngle += 2 * math.Pi
|
|
|
|
|
}
|
2025-02-22 16:34:58 +00:00
|
|
|
}
|
2025-02-26 04:12:19 +00:00
|
|
|
|
|
|
|
|
// Adjust radius based on offset for parallel edges
|
|
|
|
|
arcRadius := baseRadius * (1.0 + offset)
|
|
|
|
|
|
|
|
|
|
// Control points for the path
|
2025-02-22 16:34:58 +00:00
|
|
|
path := make([]*geo.Point, 0, ARC_STEPS+1)
|
2025-02-26 04:12:19 +00:00
|
|
|
|
|
|
|
|
// Add intermediate points along the arc
|
2025-02-22 16:34:58 +00:00
|
|
|
for i := 0; i <= ARC_STEPS; i++ {
|
|
|
|
|
t := float64(i) / float64(ARC_STEPS)
|
|
|
|
|
angle := srcAngle + t*(dstAngle-srcAngle)
|
2025-02-26 04:12:19 +00:00
|
|
|
|
|
|
|
|
// Apply an inward bend for better curves
|
|
|
|
|
distanceFactor := 1.0 - EDGE_BEND_FACTOR * math.Sin(t * math.Pi)
|
|
|
|
|
radius := arcRadius * distanceFactor
|
|
|
|
|
|
|
|
|
|
x := radius * math.Cos(angle)
|
|
|
|
|
y := radius * math.Sin(angle)
|
2025-02-22 16:34:58 +00:00
|
|
|
path = append(path, geo.NewPoint(x, y))
|
|
|
|
|
}
|
2025-02-26 04:12:19 +00:00
|
|
|
|
|
|
|
|
// Ensure endpoints are exactly at source and destination centers
|
2025-02-22 16:34:58 +00:00
|
|
|
path[0] = srcCenter
|
|
|
|
|
path[len(path)-1] = dstCenter
|
|
|
|
|
|
2025-02-26 04:12:19 +00:00
|
|
|
// Clamp endpoints to the boundaries of the boxes
|
2025-02-22 11:06:24 +00:00
|
|
|
_, newSrc := clampPointOutsideBox(edge.Src.Box, path, 0)
|
|
|
|
|
_, newDst := clampPointOutsideBoxReverse(edge.Dst.Box, path, len(path)-1)
|
|
|
|
|
path[0] = newSrc
|
|
|
|
|
path[len(path)-1] = newDst
|
|
|
|
|
|
2025-02-26 04:12:19 +00:00
|
|
|
// Trim redundant path points
|
2025-02-22 13:51:14 +00:00
|
|
|
path = trimPathPoints(path, edge.Src.Box)
|
|
|
|
|
path = trimPathPoints(path, edge.Dst.Box)
|
2025-02-22 13:35:53 +00:00
|
|
|
|
2025-02-26 04:12:19 +00:00
|
|
|
// Smoothen the path
|
|
|
|
|
path = smoothPath(path)
|
|
|
|
|
|
|
|
|
|
// Set the final route
|
2025-02-22 13:51:14 +00:00
|
|
|
edge.Route = path
|
|
|
|
|
edge.IsCurve = true
|
2025-02-23 16:53:22 +00:00
|
|
|
|
2025-02-26 04:12:19 +00:00
|
|
|
// Add arrow direction point for the end
|
2025-02-23 16:53:22 +00:00
|
|
|
if len(edge.Route) >= 2 {
|
2025-02-26 04:12:19 +00:00
|
|
|
adjustArrowDirection(edge)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// smoothPath applies path smoothing to reduce sharp angles
|
|
|
|
|
func smoothPath(path []*geo.Point) []*geo.Point {
|
|
|
|
|
if len(path) <= 3 {
|
|
|
|
|
return path
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
result := []*geo.Point{path[0]}
|
|
|
|
|
|
|
|
|
|
// Use a simple moving average for interior points
|
|
|
|
|
for i := 1; i < len(path)-1; i++ {
|
|
|
|
|
prev := path[i-1]
|
|
|
|
|
curr := path[i]
|
|
|
|
|
next := path[i+1]
|
|
|
|
|
|
|
|
|
|
// Simple weighted average (current point has more weight)
|
|
|
|
|
avgX := (prev.X + 2*curr.X + next.X) / 4
|
|
|
|
|
avgY := (prev.Y + 2*curr.Y + next.Y) / 4
|
|
|
|
|
|
|
|
|
|
result = append(result, geo.NewPoint(avgX, avgY))
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
result = append(result, path[len(path)-1])
|
|
|
|
|
return result
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// adjustArrowDirection ensures the arrow points in the right direction
|
|
|
|
|
func adjustArrowDirection(edge *d2graph.Edge) {
|
|
|
|
|
lastIndex := len(edge.Route) - 1
|
|
|
|
|
lastPoint := edge.Route[lastIndex]
|
|
|
|
|
secondLastPoint := edge.Route[lastIndex-1]
|
|
|
|
|
|
|
|
|
|
// Calculate tangent vector perpendicular to radius (for smooth entry)
|
|
|
|
|
tangentX := -lastPoint.Y
|
|
|
|
|
tangentY := lastPoint.X
|
|
|
|
|
mag := math.Hypot(tangentX, tangentY)
|
|
|
|
|
if mag > 0 {
|
|
|
|
|
tangentX /= mag
|
|
|
|
|
tangentY /= mag
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Check current direction
|
|
|
|
|
dx := lastPoint.X - secondLastPoint.X
|
|
|
|
|
dy := lastPoint.Y - secondLastPoint.Y
|
|
|
|
|
segLength := math.Hypot(dx, dy)
|
|
|
|
|
|
|
|
|
|
if segLength > 0 {
|
|
|
|
|
currentDirX := dx / segLength
|
|
|
|
|
currentDirY := dy / segLength
|
|
|
|
|
|
|
|
|
|
// Adjust only if direction needs correction
|
|
|
|
|
dotProduct := currentDirX*tangentX + currentDirY*tangentY
|
|
|
|
|
if segLength < MIN_SEGMENT_LEN || dotProduct < 0.9 {
|
|
|
|
|
// Create new point for smooth arrow entry
|
|
|
|
|
adjustLength := math.Max(MIN_SEGMENT_LEN, segLength * 0.8)
|
|
|
|
|
newSecondLastX := lastPoint.X - tangentX*adjustLength
|
|
|
|
|
newSecondLastY := lastPoint.Y - tangentY*adjustLength
|
|
|
|
|
edge.Route[lastIndex-1] = geo.NewPoint(newSecondLastX, newSecondLastY)
|
2025-02-23 16:53:22 +00:00
|
|
|
}
|
|
|
|
|
}
|
2025-02-22 13:35:53 +00:00
|
|
|
}
|
2025-02-22 10:50:31 +00:00
|
|
|
|
2025-02-22 16:34:58 +00:00
|
|
|
// clampPointOutsideBox walks forward along the path until it finds a point outside the box,
|
|
|
|
|
// then replaces the point with a precise intersection.
|
2025-02-22 10:37:44 +00:00
|
|
|
func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *geo.Point) {
|
|
|
|
|
if startIdx >= len(path)-1 {
|
|
|
|
|
return startIdx, path[startIdx]
|
2025-02-22 10:36:51 +00:00
|
|
|
}
|
2025-02-22 10:37:44 +00:00
|
|
|
if !boxContains(box, path[startIdx]) {
|
|
|
|
|
return startIdx, path[startIdx]
|
2025-02-22 10:36:51 +00:00
|
|
|
}
|
|
|
|
|
|
2025-02-22 10:37:44 +00:00
|
|
|
for i := startIdx + 1; i < len(path); i++ {
|
|
|
|
|
if boxContains(box, path[i]) {
|
|
|
|
|
continue
|
|
|
|
|
}
|
|
|
|
|
seg := geo.NewSegment(path[i-1], path[i])
|
|
|
|
|
inter := findPreciseIntersection(box, *seg)
|
|
|
|
|
if inter != nil {
|
|
|
|
|
return i, inter
|
|
|
|
|
}
|
|
|
|
|
return i, path[i]
|
2025-02-22 10:36:51 +00:00
|
|
|
}
|
2025-02-23 18:46:31 +00:00
|
|
|
return len(path) - 1, path[len(path)-1]
|
2025-02-21 19:24:57 +00:00
|
|
|
}
|
2025-02-21 17:41:31 +00:00
|
|
|
|
2025-02-22 16:34:58 +00:00
|
|
|
// clampPointOutsideBoxReverse works similarly but in reverse order.
|
2025-02-22 10:37:44 +00:00
|
|
|
func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (int, *geo.Point) {
|
|
|
|
|
if endIdx <= 0 {
|
|
|
|
|
return endIdx, path[endIdx]
|
|
|
|
|
}
|
|
|
|
|
if !boxContains(box, path[endIdx]) {
|
|
|
|
|
return endIdx, path[endIdx]
|
2025-02-22 10:36:51 +00:00
|
|
|
}
|
|
|
|
|
|
2025-02-22 10:37:44 +00:00
|
|
|
for j := endIdx - 1; j >= 0; j-- {
|
|
|
|
|
if boxContains(box, path[j]) {
|
|
|
|
|
continue
|
|
|
|
|
}
|
|
|
|
|
seg := geo.NewSegment(path[j], path[j+1])
|
|
|
|
|
inter := findPreciseIntersection(box, *seg)
|
|
|
|
|
if inter != nil {
|
|
|
|
|
return j, inter
|
|
|
|
|
}
|
|
|
|
|
return j, path[j]
|
2025-02-22 10:36:51 +00:00
|
|
|
}
|
2025-02-22 10:37:44 +00:00
|
|
|
return 0, path[0]
|
2025-02-21 19:24:57 +00:00
|
|
|
}
|
|
|
|
|
|
2025-02-22 16:34:58 +00:00
|
|
|
// findPreciseIntersection calculates intersection points between seg and all four sides of the box,
|
|
|
|
|
// then returns the intersection closest to seg.Start.
|
2025-02-22 10:37:44 +00:00
|
|
|
func findPreciseIntersection(box *geo.Box, seg geo.Segment) *geo.Point {
|
|
|
|
|
intersections := []struct {
|
|
|
|
|
point *geo.Point
|
|
|
|
|
t float64
|
|
|
|
|
}{}
|
|
|
|
|
|
2025-02-22 10:36:51 +00:00
|
|
|
left := box.TopLeft.X
|
|
|
|
|
right := box.TopLeft.X + box.Width
|
|
|
|
|
top := box.TopLeft.Y
|
|
|
|
|
bottom := box.TopLeft.Y + box.Height
|
|
|
|
|
|
2025-02-22 10:37:44 +00:00
|
|
|
dx := seg.End.X - seg.Start.X
|
|
|
|
|
dy := seg.End.Y - seg.Start.Y
|
|
|
|
|
|
2025-02-22 16:34:58 +00:00
|
|
|
// Check vertical boundaries.
|
2025-02-22 10:37:44 +00:00
|
|
|
if dx != 0 {
|
2025-02-22 16:34:58 +00:00
|
|
|
// Left boundary.
|
2025-02-22 10:37:44 +00:00
|
|
|
t := (left - seg.Start.X) / dx
|
|
|
|
|
if t >= 0 && t <= 1 {
|
|
|
|
|
y := seg.Start.Y + t*dy
|
|
|
|
|
if y >= top && y <= bottom {
|
|
|
|
|
intersections = append(intersections, struct {
|
|
|
|
|
point *geo.Point
|
|
|
|
|
t float64
|
|
|
|
|
}{geo.NewPoint(left, y), t})
|
|
|
|
|
}
|
|
|
|
|
}
|
2025-02-22 16:34:58 +00:00
|
|
|
// Right boundary.
|
2025-02-22 10:37:44 +00:00
|
|
|
t = (right - seg.Start.X) / dx
|
|
|
|
|
if t >= 0 && t <= 1 {
|
|
|
|
|
y := seg.Start.Y + t*dy
|
|
|
|
|
if y >= top && y <= bottom {
|
|
|
|
|
intersections = append(intersections, struct {
|
|
|
|
|
point *geo.Point
|
|
|
|
|
t float64
|
|
|
|
|
}{geo.NewPoint(right, y), t})
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2025-02-22 16:34:58 +00:00
|
|
|
// Check horizontal boundaries.
|
2025-02-22 10:37:44 +00:00
|
|
|
if dy != 0 {
|
2025-02-22 16:34:58 +00:00
|
|
|
// Top boundary.
|
2025-02-22 10:37:44 +00:00
|
|
|
t := (top - seg.Start.Y) / dy
|
|
|
|
|
if t >= 0 && t <= 1 {
|
|
|
|
|
x := seg.Start.X + t*dx
|
|
|
|
|
if x >= left && x <= right {
|
|
|
|
|
intersections = append(intersections, struct {
|
|
|
|
|
point *geo.Point
|
|
|
|
|
t float64
|
|
|
|
|
}{geo.NewPoint(x, top), t})
|
|
|
|
|
}
|
|
|
|
|
}
|
2025-02-22 16:34:58 +00:00
|
|
|
// Bottom boundary.
|
2025-02-22 10:37:44 +00:00
|
|
|
t = (bottom - seg.Start.Y) / dy
|
|
|
|
|
if t >= 0 && t <= 1 {
|
|
|
|
|
x := seg.Start.X + t*dx
|
|
|
|
|
if x >= left && x <= right {
|
|
|
|
|
intersections = append(intersections, struct {
|
|
|
|
|
point *geo.Point
|
|
|
|
|
t float64
|
|
|
|
|
}{geo.NewPoint(x, bottom), t})
|
|
|
|
|
}
|
|
|
|
|
}
|
2025-02-22 10:36:51 +00:00
|
|
|
}
|
2025-02-22 10:37:44 +00:00
|
|
|
|
|
|
|
|
if len(intersections) == 0 {
|
|
|
|
|
return nil
|
|
|
|
|
}
|
|
|
|
|
|
2025-02-22 16:34:58 +00:00
|
|
|
// Sort intersections by t (distance from seg.Start) and return the closest.
|
2025-02-22 10:37:44 +00:00
|
|
|
sort.Slice(intersections, func(i, j int) bool {
|
|
|
|
|
return intersections[i].t < intersections[j].t
|
|
|
|
|
})
|
|
|
|
|
return intersections[0].point
|
2025-02-22 10:36:51 +00:00
|
|
|
}
|
|
|
|
|
|
2025-02-22 16:34:58 +00:00
|
|
|
// trimPathPoints removes intermediate points that fall inside the given box while preserving endpoints.
|
2025-02-22 10:42:02 +00:00
|
|
|
func trimPathPoints(path []*geo.Point, box *geo.Box) []*geo.Point {
|
|
|
|
|
if len(path) <= 2 {
|
|
|
|
|
return path
|
2025-02-22 10:37:44 +00:00
|
|
|
}
|
2025-02-22 10:42:02 +00:00
|
|
|
trimmed := []*geo.Point{path[0]}
|
|
|
|
|
for i := 1; i < len(path)-1; i++ {
|
|
|
|
|
if !boxContains(box, path[i]) {
|
|
|
|
|
trimmed = append(trimmed, path[i])
|
|
|
|
|
}
|
2025-02-22 10:37:44 +00:00
|
|
|
}
|
2025-02-22 10:42:02 +00:00
|
|
|
trimmed = append(trimmed, path[len(path)-1])
|
|
|
|
|
return trimmed
|
2025-02-22 10:37:44 +00:00
|
|
|
}
|
|
|
|
|
|
2025-02-26 04:12:19 +00:00
|
|
|
// boxContains checks if a point is inside a box (strictly inside, not on boundary)
|
2025-02-22 10:32:46 +00:00
|
|
|
func boxContains(b *geo.Box, p *geo.Point) bool {
|
2025-02-22 10:37:44 +00:00
|
|
|
return p.X > b.TopLeft.X &&
|
|
|
|
|
p.X < b.TopLeft.X+b.Width &&
|
|
|
|
|
p.Y > b.TopLeft.Y &&
|
|
|
|
|
p.Y < b.TopLeft.Y+b.Height
|
2025-02-21 17:41:31 +00:00
|
|
|
}
|
|
|
|
|
|
2025-02-26 04:12:19 +00:00
|
|
|
// positionLabelsIcons positions labels and icons with better handling of overlap
|
2025-02-21 17:41:31 +00:00
|
|
|
func positionLabelsIcons(obj *d2graph.Object) {
|
2025-02-26 04:12:19 +00:00
|
|
|
// Handle icon positioning first
|
2025-02-22 10:36:51 +00:00
|
|
|
if obj.Icon != nil && obj.IconPosition == nil {
|
|
|
|
|
if len(obj.ChildrenArray) > 0 {
|
2025-02-26 04:12:19 +00:00
|
|
|
// For container objects, place icon at top left
|
2025-02-22 10:36:51 +00:00
|
|
|
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
|
2025-02-26 04:12:19 +00:00
|
|
|
|
|
|
|
|
// If no label position is set, place label at top right
|
2025-02-22 10:36:51 +00:00
|
|
|
if obj.LabelPosition == nil {
|
|
|
|
|
obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
} else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
|
2025-02-26 04:12:19 +00:00
|
|
|
// For structured objects, place icon at top left
|
2025-02-22 10:36:51 +00:00
|
|
|
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
|
|
|
|
|
} else {
|
2025-02-26 04:12:19 +00:00
|
|
|
// For standard objects, center the icon
|
2025-02-22 10:36:51 +00:00
|
|
|
obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2025-02-26 04:12:19 +00:00
|
|
|
// Now handle label positioning
|
2025-02-22 10:36:51 +00:00
|
|
|
if obj.HasLabel() && obj.LabelPosition == nil {
|
|
|
|
|
if len(obj.ChildrenArray) > 0 {
|
2025-02-26 04:12:19 +00:00
|
|
|
// For container objects, place label at top center
|
2025-02-22 10:36:51 +00:00
|
|
|
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
|
|
|
|
|
} else if obj.HasOutsideBottomLabel() {
|
2025-02-26 04:12:19 +00:00
|
|
|
// For objects with bottom labels, respect that
|
2025-02-22 10:36:51 +00:00
|
|
|
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
|
|
|
|
|
} else if obj.Icon != nil {
|
2025-02-26 04:12:19 +00:00
|
|
|
// If there's an icon, place label at top center
|
2025-02-22 10:36:51 +00:00
|
|
|
obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
|
|
|
|
|
} else {
|
2025-02-26 04:12:19 +00:00
|
|
|
// Default positioning in the middle
|
2025-02-22 10:36:51 +00:00
|
|
|
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
|
|
|
|
|
}
|
|
|
|
|
|
2025-02-26 04:12:19 +00:00
|
|
|
// If label is too large for the object, move it outside
|
|
|
|
|
if float64(obj.LabelDimensions.Width) > obj.Width*0.9 ||
|
|
|
|
|
float64(obj.LabelDimensions.Height) > obj.Height*0.9 {
|
2025-02-22 10:36:51 +00:00
|
|
|
if len(obj.ChildrenArray) > 0 {
|
|
|
|
|
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
|
|
|
|
|
} else {
|
|
|
|
|
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2025-02-26 04:12:19 +00:00
|
|
|
}
|