d2/d2layouts/d2cycle/layout.go

546 lines
15 KiB
Go
Raw Normal View History

2025-02-21 16:34:23 +00:00
package d2cycle
import (
2025-02-22 10:36:51 +00:00
"context"
"fmt"
2025-02-22 10:36:51 +00:00
"math"
2025-02-22 10:37:44 +00:00
"sort"
2025-02-21 16:34:23 +00:00
2025-02-22 10:36:51 +00:00
"oss.terrastruct.com/d2/d2graph"
"oss.terrastruct.com/d2/lib/geo"
"oss.terrastruct.com/d2/lib/label"
"oss.terrastruct.com/util-go/go2"
2025-02-21 16:34:23 +00:00
)
const (
MIN_RADIUS = 250 // Increased to provide more space
PADDING = 40 // Increased padding between objects
MIN_SEGMENT_LEN = 15 // Increased minimum segment length
ARC_STEPS = 100 // Keep the same number of steps for arc calculation
LABEL_MARGIN = 10 // Margin for labels
EDGE_BEND_FACTOR = 0.3 // Controls how much edges bend inward/outward
EDGE_PADDING_FACTOR = 0.15 // Controls spacing between parallel edges
2025-02-21 16:34:23 +00:00
)
// Layout lays out the graph and computes curved edge routes
2025-02-21 16:34:23 +00:00
func Layout(ctx context.Context, g *d2graph.Graph, layout d2graph.LayoutGraph) error {
2025-02-22 10:36:51 +00:00
objects := g.Root.ChildrenArray
if len(objects) == 0 {
return nil
}
2025-02-21 17:41:31 +00:00
// Pre-compute dimensions for all objects
2025-02-22 10:36:51 +00:00
for _, obj := range g.Objects {
positionLabelsIcons(obj)
}
2025-02-21 17:41:31 +00:00
// Calculate optimal radius based on number and size of objects
radius := calculateOptimalRadius(objects)
// Position objects in a circle
2025-02-22 10:36:51 +00:00
positionObjects(objects, radius)
// Adjust positions to resolve overlaps
resolveOverlaps(objects, radius)
2025-02-21 17:41:31 +00:00
// Create edge routes for all edges
createEdgeRoutes(g.Edges, objects, radius)
2025-02-21 17:41:31 +00:00
2025-02-22 10:36:51 +00:00
return nil
2025-02-21 16:34:23 +00:00
}
// calculateOptimalRadius computes an ideal radius based on number and size of objects
func calculateOptimalRadius(objects []*d2graph.Object) float64 {
2025-02-22 10:36:51 +00:00
numObjects := float64(len(objects))
// Find largest object dimension
2025-02-22 10:36:51 +00:00
maxSize := 0.0
totalArea := 0.0
2025-02-22 10:36:51 +00:00
for _, obj := range objects {
size := math.Max(obj.Box.Width, obj.Box.Height)
maxSize = math.Max(maxSize, size)
totalArea += obj.Box.Width * obj.Box.Height
2025-02-22 10:36:51 +00:00
}
// Minimum radius based on largest object
minRadiusBySize := (maxSize/2.0 + PADDING) / math.Sin(math.Pi/numObjects)
// Alternative calculation based on total area
areaRadius := math.Sqrt(totalArea / (math.Pi * 0.5)) * 1.5
// Use the larger of the minimum values
calculatedRadius := math.Max(minRadiusBySize, areaRadius)
// Ensure we don't go below minimum radius
return math.Max(calculatedRadius, MIN_RADIUS)
2025-02-21 16:34:23 +00:00
}
// positionObjects arranges objects in a circle with the given radius
2025-02-21 16:34:23 +00:00
func positionObjects(objects []*d2graph.Object, radius float64) {
2025-02-22 10:36:51 +00:00
numObjects := float64(len(objects))
// Start from top (-π/2) with equal spacing
2025-02-22 16:34:58 +00:00
angleOffset := -math.Pi / 2
2025-02-22 10:36:51 +00:00
// Special case for small number of objects
if numObjects <= 3 {
// For 2-3 objects, increase spacing
angleOffset = -math.Pi / 2
radius *= 1.2
}
2025-02-22 10:36:51 +00:00
for i, obj := range objects {
angle := angleOffset + (2 * math.Pi * float64(i) / numObjects)
2025-02-22 10:36:51 +00:00
x := radius * math.Cos(angle)
y := radius * math.Sin(angle)
obj.TopLeft = geo.NewPoint(
x - obj.Box.Width/2,
y - obj.Box.Height/2,
2025-02-22 10:36:51 +00:00
)
}
2025-02-21 16:34:23 +00:00
}
// resolveOverlaps detects and fixes overlapping objects
func resolveOverlaps(objects []*d2graph.Object, radius float64) {
if len(objects) <= 1 {
return
}
// Maximum number of iterations to prevent infinite loops
maxIterations := 10
iteration := 0
for iteration < maxIterations {
overlapsResolved := true
// Check each pair of objects for overlap
for i := 0; i < len(objects); i++ {
for j := i + 1; j < len(objects); j++ {
obj1 := objects[i]
obj2 := objects[j]
// Calculate box centers
center1 := obj1.Center()
center2 := obj2.Center()
// Calculate minimum separation needed
minSepX := (obj1.Box.Width + obj2.Box.Width) / 2 + PADDING
minSepY := (obj1.Box.Height + obj2.Box.Height) / 2 + PADDING
// Calculate actual separation
dx := math.Abs(center2.X - center1.X)
dy := math.Abs(center2.Y - center1.Y)
// Check for overlap
if dx < minSepX && dy < minSepY {
overlapsResolved = false
// Calculate push direction (from center to objects)
angle1 := math.Atan2(center1.Y, center1.X)
angle2 := math.Atan2(center2.Y, center2.X)
// Push objects outward slightly
pushFactor := 0.1 * radius
// Update first object position
newX1 := pushFactor * math.Cos(angle1)
newY1 := pushFactor * math.Sin(angle1)
obj1.TopLeft.X += newX1 - obj1.Box.Width/2
obj1.TopLeft.Y += newY1 - obj1.Box.Height/2
// Update second object position
newX2 := pushFactor * math.Cos(angle2)
newY2 := pushFactor * math.Sin(angle2)
obj2.TopLeft.X += newX2 - obj2.Box.Width/2
obj2.TopLeft.Y += newY2 - obj2.Box.Height/2
}
}
}
// If no overlaps were found, we're done
if overlapsResolved {
break
}
iteration++
}
}
// createEdgeRoutes creates routes for all edges in the graph
func createEdgeRoutes(edges []*d2graph.Edge, objects []*d2graph.Object, radius float64) {
// First categorize edges to identify parallel edges
edgeGroups := groupParallelEdges(edges)
// Process each group of edges
for _, group := range edgeGroups {
if len(group) == 1 {
// Single edge
createCircularArc(group[0], radius, 0)
} else {
// Multiple parallel edges
for i, edge := range group {
// Alternate between inner and outer curves for parallel edges
offset := float64(i-(len(group)-1)/2) * EDGE_PADDING_FACTOR
createCircularArc(edge, radius, offset)
}
}
}
}
// groupParallelEdges identifies edges between the same source and destination
func groupParallelEdges(edges []*d2graph.Edge) [][]*d2graph.Edge {
groups := make(map[string][]*d2graph.Edge)
for _, edge := range edges {
if edge.Src == nil || edge.Dst == nil {
continue
}
// Create a key for each source-destination pair using object IDs or addresses
// Since GetID() is not available, use pointer addresses as unique identifiers
srcID := fmt.Sprintf("%p", edge.Src)
dstID := fmt.Sprintf("%p", edge.Dst)
key := srcID + "->" + dstID
groups[key] = append(groups[key], edge)
}
// Convert map to slice of edge groups
result := make([][]*d2graph.Edge, 0, len(groups))
for _, group := range groups {
result = append(result, group)
}
return result
}
// createCircularArc creates a curved path between source and destination objects
func createCircularArc(edge *d2graph.Edge, baseRadius float64, offset float64) {
2025-02-22 10:50:31 +00:00
if edge.Src == nil || edge.Dst == nil {
return
}
srcCenter := edge.Src.Center()
dstCenter := edge.Dst.Center()
// Calculate angles and radii
2025-02-22 16:34:58 +00:00
srcAngle := math.Atan2(srcCenter.Y, srcCenter.X)
dstAngle := math.Atan2(dstCenter.Y, dstCenter.X)
// Ensure we go the shorter way around the circle
2025-02-22 16:34:58 +00:00
if dstAngle < srcAngle {
if srcAngle - dstAngle > math.Pi {
dstAngle += 2 * math.Pi
}
} else {
if dstAngle - srcAngle > math.Pi {
srcAngle += 2 * math.Pi
}
2025-02-22 16:34:58 +00:00
}
// Adjust radius based on offset for parallel edges
arcRadius := baseRadius * (1.0 + offset)
// Control points for the path
2025-02-22 16:34:58 +00:00
path := make([]*geo.Point, 0, ARC_STEPS+1)
// Add intermediate points along the arc
2025-02-22 16:34:58 +00:00
for i := 0; i <= ARC_STEPS; i++ {
t := float64(i) / float64(ARC_STEPS)
angle := srcAngle + t*(dstAngle-srcAngle)
// Apply an inward bend for better curves
distanceFactor := 1.0 - EDGE_BEND_FACTOR * math.Sin(t * math.Pi)
radius := arcRadius * distanceFactor
x := radius * math.Cos(angle)
y := radius * math.Sin(angle)
2025-02-22 16:34:58 +00:00
path = append(path, geo.NewPoint(x, y))
}
// Ensure endpoints are exactly at source and destination centers
2025-02-22 16:34:58 +00:00
path[0] = srcCenter
path[len(path)-1] = dstCenter
// Clamp endpoints to the boundaries of the boxes
2025-02-22 11:06:24 +00:00
_, newSrc := clampPointOutsideBox(edge.Src.Box, path, 0)
_, newDst := clampPointOutsideBoxReverse(edge.Dst.Box, path, len(path)-1)
path[0] = newSrc
path[len(path)-1] = newDst
// Trim redundant path points
2025-02-22 13:51:14 +00:00
path = trimPathPoints(path, edge.Src.Box)
path = trimPathPoints(path, edge.Dst.Box)
2025-02-22 13:35:53 +00:00
// Smoothen the path
path = smoothPath(path)
// Set the final route
2025-02-22 13:51:14 +00:00
edge.Route = path
edge.IsCurve = true
2025-02-23 16:53:22 +00:00
// Add arrow direction point for the end
2025-02-23 16:53:22 +00:00
if len(edge.Route) >= 2 {
adjustArrowDirection(edge)
}
}
// smoothPath applies path smoothing to reduce sharp angles
func smoothPath(path []*geo.Point) []*geo.Point {
if len(path) <= 3 {
return path
}
result := []*geo.Point{path[0]}
// Use a simple moving average for interior points
for i := 1; i < len(path)-1; i++ {
prev := path[i-1]
curr := path[i]
next := path[i+1]
// Simple weighted average (current point has more weight)
avgX := (prev.X + 2*curr.X + next.X) / 4
avgY := (prev.Y + 2*curr.Y + next.Y) / 4
result = append(result, geo.NewPoint(avgX, avgY))
}
result = append(result, path[len(path)-1])
return result
}
// adjustArrowDirection ensures the arrow points in the right direction
func adjustArrowDirection(edge *d2graph.Edge) {
lastIndex := len(edge.Route) - 1
lastPoint := edge.Route[lastIndex]
secondLastPoint := edge.Route[lastIndex-1]
// Calculate tangent vector perpendicular to radius (for smooth entry)
tangentX := -lastPoint.Y
tangentY := lastPoint.X
mag := math.Hypot(tangentX, tangentY)
if mag > 0 {
tangentX /= mag
tangentY /= mag
}
// Check current direction
dx := lastPoint.X - secondLastPoint.X
dy := lastPoint.Y - secondLastPoint.Y
segLength := math.Hypot(dx, dy)
if segLength > 0 {
currentDirX := dx / segLength
currentDirY := dy / segLength
// Adjust only if direction needs correction
dotProduct := currentDirX*tangentX + currentDirY*tangentY
if segLength < MIN_SEGMENT_LEN || dotProduct < 0.9 {
// Create new point for smooth arrow entry
adjustLength := math.Max(MIN_SEGMENT_LEN, segLength * 0.8)
newSecondLastX := lastPoint.X - tangentX*adjustLength
newSecondLastY := lastPoint.Y - tangentY*adjustLength
edge.Route[lastIndex-1] = geo.NewPoint(newSecondLastX, newSecondLastY)
2025-02-23 16:53:22 +00:00
}
}
2025-02-22 13:35:53 +00:00
}
2025-02-22 10:50:31 +00:00
2025-02-22 16:34:58 +00:00
// clampPointOutsideBox walks forward along the path until it finds a point outside the box,
// then replaces the point with a precise intersection.
2025-02-22 10:37:44 +00:00
func clampPointOutsideBox(box *geo.Box, path []*geo.Point, startIdx int) (int, *geo.Point) {
if startIdx >= len(path)-1 {
return startIdx, path[startIdx]
2025-02-22 10:36:51 +00:00
}
2025-02-22 10:37:44 +00:00
if !boxContains(box, path[startIdx]) {
return startIdx, path[startIdx]
2025-02-22 10:36:51 +00:00
}
2025-02-22 10:37:44 +00:00
for i := startIdx + 1; i < len(path); i++ {
if boxContains(box, path[i]) {
continue
}
seg := geo.NewSegment(path[i-1], path[i])
inter := findPreciseIntersection(box, *seg)
if inter != nil {
return i, inter
}
return i, path[i]
2025-02-22 10:36:51 +00:00
}
return len(path) - 1, path[len(path)-1]
2025-02-21 19:24:57 +00:00
}
2025-02-21 17:41:31 +00:00
2025-02-22 16:34:58 +00:00
// clampPointOutsideBoxReverse works similarly but in reverse order.
2025-02-22 10:37:44 +00:00
func clampPointOutsideBoxReverse(box *geo.Box, path []*geo.Point, endIdx int) (int, *geo.Point) {
if endIdx <= 0 {
return endIdx, path[endIdx]
}
if !boxContains(box, path[endIdx]) {
return endIdx, path[endIdx]
2025-02-22 10:36:51 +00:00
}
2025-02-22 10:37:44 +00:00
for j := endIdx - 1; j >= 0; j-- {
if boxContains(box, path[j]) {
continue
}
seg := geo.NewSegment(path[j], path[j+1])
inter := findPreciseIntersection(box, *seg)
if inter != nil {
return j, inter
}
return j, path[j]
2025-02-22 10:36:51 +00:00
}
2025-02-22 10:37:44 +00:00
return 0, path[0]
2025-02-21 19:24:57 +00:00
}
2025-02-22 16:34:58 +00:00
// findPreciseIntersection calculates intersection points between seg and all four sides of the box,
// then returns the intersection closest to seg.Start.
2025-02-22 10:37:44 +00:00
func findPreciseIntersection(box *geo.Box, seg geo.Segment) *geo.Point {
intersections := []struct {
point *geo.Point
t float64
}{}
2025-02-22 10:36:51 +00:00
left := box.TopLeft.X
right := box.TopLeft.X + box.Width
top := box.TopLeft.Y
bottom := box.TopLeft.Y + box.Height
2025-02-22 10:37:44 +00:00
dx := seg.End.X - seg.Start.X
dy := seg.End.Y - seg.Start.Y
2025-02-22 16:34:58 +00:00
// Check vertical boundaries.
2025-02-22 10:37:44 +00:00
if dx != 0 {
2025-02-22 16:34:58 +00:00
// Left boundary.
2025-02-22 10:37:44 +00:00
t := (left - seg.Start.X) / dx
if t >= 0 && t <= 1 {
y := seg.Start.Y + t*dy
if y >= top && y <= bottom {
intersections = append(intersections, struct {
point *geo.Point
t float64
}{geo.NewPoint(left, y), t})
}
}
2025-02-22 16:34:58 +00:00
// Right boundary.
2025-02-22 10:37:44 +00:00
t = (right - seg.Start.X) / dx
if t >= 0 && t <= 1 {
y := seg.Start.Y + t*dy
if y >= top && y <= bottom {
intersections = append(intersections, struct {
point *geo.Point
t float64
}{geo.NewPoint(right, y), t})
}
}
}
2025-02-22 16:34:58 +00:00
// Check horizontal boundaries.
2025-02-22 10:37:44 +00:00
if dy != 0 {
2025-02-22 16:34:58 +00:00
// Top boundary.
2025-02-22 10:37:44 +00:00
t := (top - seg.Start.Y) / dy
if t >= 0 && t <= 1 {
x := seg.Start.X + t*dx
if x >= left && x <= right {
intersections = append(intersections, struct {
point *geo.Point
t float64
}{geo.NewPoint(x, top), t})
}
}
2025-02-22 16:34:58 +00:00
// Bottom boundary.
2025-02-22 10:37:44 +00:00
t = (bottom - seg.Start.Y) / dy
if t >= 0 && t <= 1 {
x := seg.Start.X + t*dx
if x >= left && x <= right {
intersections = append(intersections, struct {
point *geo.Point
t float64
}{geo.NewPoint(x, bottom), t})
}
}
2025-02-22 10:36:51 +00:00
}
2025-02-22 10:37:44 +00:00
if len(intersections) == 0 {
return nil
}
2025-02-22 16:34:58 +00:00
// Sort intersections by t (distance from seg.Start) and return the closest.
2025-02-22 10:37:44 +00:00
sort.Slice(intersections, func(i, j int) bool {
return intersections[i].t < intersections[j].t
})
return intersections[0].point
2025-02-22 10:36:51 +00:00
}
2025-02-22 16:34:58 +00:00
// trimPathPoints removes intermediate points that fall inside the given box while preserving endpoints.
2025-02-22 10:42:02 +00:00
func trimPathPoints(path []*geo.Point, box *geo.Box) []*geo.Point {
if len(path) <= 2 {
return path
2025-02-22 10:37:44 +00:00
}
2025-02-22 10:42:02 +00:00
trimmed := []*geo.Point{path[0]}
for i := 1; i < len(path)-1; i++ {
if !boxContains(box, path[i]) {
trimmed = append(trimmed, path[i])
}
2025-02-22 10:37:44 +00:00
}
2025-02-22 10:42:02 +00:00
trimmed = append(trimmed, path[len(path)-1])
return trimmed
2025-02-22 10:37:44 +00:00
}
// boxContains checks if a point is inside a box (strictly inside, not on boundary)
2025-02-22 10:32:46 +00:00
func boxContains(b *geo.Box, p *geo.Point) bool {
2025-02-22 10:37:44 +00:00
return p.X > b.TopLeft.X &&
p.X < b.TopLeft.X+b.Width &&
p.Y > b.TopLeft.Y &&
p.Y < b.TopLeft.Y+b.Height
2025-02-21 17:41:31 +00:00
}
// positionLabelsIcons positions labels and icons with better handling of overlap
2025-02-21 17:41:31 +00:00
func positionLabelsIcons(obj *d2graph.Object) {
// Handle icon positioning first
2025-02-22 10:36:51 +00:00
if obj.Icon != nil && obj.IconPosition == nil {
if len(obj.ChildrenArray) > 0 {
// For container objects, place icon at top left
2025-02-22 10:36:51 +00:00
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
// If no label position is set, place label at top right
2025-02-22 10:36:51 +00:00
if obj.LabelPosition == nil {
obj.LabelPosition = go2.Pointer(label.OutsideTopRight.String())
return
}
} else if obj.SQLTable != nil || obj.Class != nil || obj.Language != "" {
// For structured objects, place icon at top left
2025-02-22 10:36:51 +00:00
obj.IconPosition = go2.Pointer(label.OutsideTopLeft.String())
} else {
// For standard objects, center the icon
2025-02-22 10:36:51 +00:00
obj.IconPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
}
// Now handle label positioning
2025-02-22 10:36:51 +00:00
if obj.HasLabel() && obj.LabelPosition == nil {
if len(obj.ChildrenArray) > 0 {
// For container objects, place label at top center
2025-02-22 10:36:51 +00:00
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else if obj.HasOutsideBottomLabel() {
// For objects with bottom labels, respect that
2025-02-22 10:36:51 +00:00
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
} else if obj.Icon != nil {
// If there's an icon, place label at top center
2025-02-22 10:36:51 +00:00
obj.LabelPosition = go2.Pointer(label.InsideTopCenter.String())
} else {
// Default positioning in the middle
2025-02-22 10:36:51 +00:00
obj.LabelPosition = go2.Pointer(label.InsideMiddleCenter.String())
}
// If label is too large for the object, move it outside
if float64(obj.LabelDimensions.Width) > obj.Width*0.9 ||
float64(obj.LabelDimensions.Height) > obj.Height*0.9 {
2025-02-22 10:36:51 +00:00
if len(obj.ChildrenArray) > 0 {
obj.LabelPosition = go2.Pointer(label.OutsideTopCenter.String())
} else {
obj.LabelPosition = go2.Pointer(label.OutsideBottomCenter.String())
}
}
}
}